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Each of these research efforts is oriented toward
one branch of engineering, but has substantial poten-
tial benefits to other engineering disciplines at LLNL.

Mechanical engineering research includes funda-
mental work on material response, such as the relia-
bility analyses of brittle materials and the simulation
of anisotropic inelasticity, as well as developmental
research on mathematics and computation, such as
the improvements in implicit temporal integration
algorithms for structural response in NIKE3D, or the
slidesurface interface efforts developed for the
DYNA3D code. 

Electrical engineering enterprises include the
development of femtosecond-resolution laser/RF/x-
ray pulses for accelerator technology improvements,
and software usability efforts developed for the
TIGER time-domain electromagnetics code. Finally,
the emerging discipline of automata methods in
engineering is aptly demonstrated by our pioneering
work in Lattice-Boltzmann simulations for chemical
engineering and microfluidics.

This nascent computational engineering orga-
nization at LLNL will continue to grow in the
future, and will  both cement the areas of
commonality in engineering and reinforce the
natural differences. The mission of the center is
to build a community of software engineers who
are both broad and deep in their understanding of
engineering computation.

The work presented here represents a transition
period in computational engineering at Lawrence
Livermore National Laboratory (LLNL). This year’s
effort marks the emergence of an integrated admin-
istrative structure designed to recognize the
common aspects of mechanical and electrical engi-
neering as well as their fundamental differences.
This administrative organization is the Center for
Computational Engineering, integrating the former
mechanical and electrical engineering thrust areas
into a more coherent unit, with a clear focus on the
development and use of engineering simulation soft-
ware as an enabling technology for LLNL.

Our FY-99 research portfolio still reflects the
natural divisions present in the engineering direc-
torate, though some of the projects demonstrate the
cross-cutting multidisciplinary nature of computa-
tional engineering. A fine example of such an effort
is the droplet-based net-form manufacturing work,
which couples mechanical and thermal response
into a simulation code capable of guiding experi-
mentation into the emerging field of droplet-based
manufacturing techniques. Three other examples of
multiple-use technology are the development of
finite-element preprocessors for the EIGER electro-
magnetics suite, the investigation into data-manage-
ment software for computational mechanics, and the
research into scalable solver technology for the
NIKE3D mechanics code. 

Kyran D. Mish, Center Director
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igh-Precision Droplet-Based 
Net-Form Manufacturing

Center for Computational Engineering 

Introduction

This new manufacturing process has the potential
to fabricate parts with complex geometry, using novel
alloys, and possessing improved strength. The very
rapid solidification of nanoliter-sized metal droplets
leads to finer grains which results in a part possessing
higher strength than achievable by conventional cast-
ing processes. New and novel alloys can be created by
co-jetting droplet streams using metals of different
droplet size and deposition rates. Additionally, the
microstructure can be varied at different locations in
the fabricated part by our ability to control the droplet
size, deposition rate, and temperature. 

Using multiple nozzles with droplet deposition
rates of 40,000 droplets/s would provide a means
for rapid prototyping metal parts. Currently, there
are several manufacturing techniques using plastic,
but no adequate methods exist for rapid prototyping
parts using metal. This capability will benefit
LLNL’s design engineers building one-of-a-kind
metal parts or small production quantities.

Progress

Figure 1 is a schematic of the droplet manufac-
turing facility at UCI. A crucible at the top of the

apparatus contains liquid metal which flows through
an orifice forming a capillary stream into the lower
vacuum chamber. A method for generating deter-
ministic droplet patterns from capillary stream
breakup has been developed by Orme. By applying
specific amplitude-modulated disturbances with an
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In collaboration with the University of California at Irvine (UCI), we are working on a new technol-
ogy that relies on the precise deposition of nanoliter molten-metal droplets that are targeted onto a
substrate by electrostatic charging and deflection. In this way, 3-D structural materials can be manu-
factured microlayer by microlayer. Because the volume of the droplets is small, they rapidly solidify
on impact, bringing forth a material component with fine grain structures which lead to enhanced
material properties such as strength. Lawrence Livermore National Laboratory (LLNL), with its
unique expertise in computational modeling and large-scale computer resources, modeled the system
to gain insight into manufacturing process control. UCI, with its state-of-the-art experimental facility,
provided computer model validation and demonstrated manufacturing feasibility.

Arthur B. Shapiro
New Technologies Engineering
Mechanical Engineering

Melissa Orme
University of California at Irvine
Irvine, California
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Figure 1. Schematic depicting the High Precision Droplet-Based
Net-Shape Manufacturing facility at UCI.
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arbitrary modulation to a viscous capillary stream,
predictable and flexibly controlled patterns of
droplets can be obtained. The disturbance is created
by a piezoelectric transducer above the orifice. The
metal droplets are charged and their trajectory is
controlled by deflection electrodes. The substrate
itself can be moved by a controllable x-y positioning
table for fabricating planar 3-D parts, or the
substrate rotated to fabricate axisymmetric parts as
shown in Fig. 2. 

The parts in Fig. 2 were fabricated from a former
prototype facility using 200-µm solder droplets. The
scope of this work is to push the technology so that
higher melting point metals such as aluminum can
be used and smaller droplet sizes (5 to 50 µm) can
be formed to fabricate thin walled parts of interest
to LLNL.

During 1998, UCI began moving the technology
forward from solder droplets to more interesting
materials with higher melting points, such as
aluminum. A new facility came on-line in August 1998.
By the end of the year, metallurgical investigations
of sectioned aluminum-droplet-on-substrate samples
from initial shake-down runs had revealed that the
grain structure was equiaxed, the grain size ranged
from 120 to 150 µm, the average porosity was about
3%, and oxides and other impurities were present.
Tensile tests were promising: the measured yield
stresses (8900 psi) were greater than both the yield
stress for the starting aluminum ingot (6816 psi) and
published handbook values for aluminum (6800 psi).

A significant fabrication challenge this year was to
overcome the inclusion of oxides and other contami-
nants in the droplet stream, which would result in defec-
tive parts. Figure 3 shows a droplet formed “stalag-
mite” (on the right) with a significant presence of oxides
indicated by the dark mottled exterior. A filter pack was
designed to fit at the bottom of the liquid metal crucible.
After four design iterations, we successfully filtered the
metal stream and reduced the oxides, as shown by the
shiny stalagmite on the left in Fig. 3.

During the shake-down runs, we also noted a loss
of control on the deposited location of the droplets.
This was caused by electrostatic interaction between
the closely spaced charged droplets. The solution was
to charge alternate droplets in the stream and capture
the uncharged droplets following a straight trajectory
by a “gutter” to prevent them from striking the
substrate. The charged droplets, with a curved trajec-
tory, avoid capture by the gutter. We have perfected
the operating procedure for creating a uniform stream
of droplets. We are concentrating now on making
components. We have made three cylinders from
three different runs but haven’t honed in on the
correct temperature or speed conditions. We have

some really porous or really “globby” cylinders
depending on our conditions. The poor quality of
these cylinders is a good illustration of the need for
precise operating conditions, and shows the impor-
tance of the modeling effort to guide the experiments. 
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Figure 2. Axisymmetric parts fabricated from a prototype facil-
ity using 200-µm solder droplets.

Figure 3. Aluminum stalagmites fabricated by directing a
stream of aluminum droplets downward onto a substrate. The
stalagmite on the right shows the presence of oxides indicated
by the dark mottled exterior. A significant challenge was to
design a filter to reduce the oxides and other contaminants.
This was successfully accomplished as demonstrated by the
shiny stalagmite on the left.
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During the last year, LLNL pursued process
modeling both on the micro-scale of an individual
droplet striking a substrate and on the larger system
scale to predict velocity and temperature drop
during time of flight. We also investigated material
constitutive models that would capture the low
strength of the metal in the liquid state and transi-
tion to the higher strength solid.

Empirical equations were found in the literature
to predict the temperature and velocity drop during
time of flight. These equations also include the effect
of the wake of one droplet on a trailing droplet.
Salvador Aceves developed the MELISSA code to
solve these equations, which was further developed
by Wayne Miller into the code HOTDROP.1 Figure 4
shows the temperature drop of a 189-µm aluminum
droplet with an initial velocity of 9 m/s in nitrogen as
a function of chamber pressure. The bottom curve
shows that a droplet with an initial temperature of
1200 K will solidify before striking the substrate at
chamber pressures above 40 kPa. Such curves
helped define the process parameters of crucible
temperature and chamber pressure that would
result in a liquid droplet with a specified superheat
when striking the substrate.

Our next step is to incorporate these empirical
equations into our finite element heat transfer code
TOPAZ. This will allow us to do system process model-
ing. Our approach is to “birth” finite elements (but
without modeling the impact process—see next para-
graph) at the droplet arrival time defined by its veloc-
ity and at the arrival temperature. These elements will
then lose energy to the environment, previously
deposited material, and the substrate. In this way we
can predict the cooling rate of the deposited material
and gain insight into the microstructure.

On the microscale, we faced a challenge in
predicting the shape of a droplet upon impact. The
difficulty existed because of our attempt to model a
liquid with an elastic-plastic constitutive model.
Such a model would be applicable after the droplet
solidified. After many failed simulation attempts
with ALE3D and DYNA3D to model the impact, we
tried to model a stationary liquid drop deforming
under gravity (a sessile drop as shown in Fig. 5). 

The material constants, such as Young’s modulus,
that resulted in the best fit between the analysis and
experiment will be used to model the liquid. These
properties will be modified for the solid phase
according to a temperature dependent function
found in the literature for aluminum. We plan to re-
investigate the use of ALE3D and DYNA3D in
predicting the deformation of a droplet on impact.
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Figure 4. Temperature drop of a 189-µm aluminum droplet
with an initial velocity of 9 m/s in nitrogen as a function of
chamber pressure. Such curves helped define the process para-
meters of crucible temperature and chamber pressure that
would result in a liquid droplet with a specified superheat
when striking the substrate.
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Figure 5. Experimental sessile drop (a) used to determine the
material properties for liquid aluminum for our finite element
model shown in (b).
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Our greatest modeling challenge is to predict the
coupled thermal-mechanical response of a droplet
impact. We have coupled the solid mechanics code
DYNA3D with TOPAZ3D. The hardest part was
developing a thermal-mechanical contact algorithm.
The algorithm developed has been verified by model-
ing the heat transfer between two sliding blocks.
Our next step is to model droplet impact. Also, other
features still need to be implemented, such as,
conversion of plastic work to heat. 

Validation is critical to our success. The literature
is rich in papers investigating the splat of a liquid
droplet without solidification.2 We found one paper
describing an energy balance method that predicted
the maximum splat diameter. We had good success
in using this equation to predict the results in other
papers. This theoretical equation was modified to
include solidification3 and predicted a 15% greater
spread diameter than measured in an experiment.
We will use this equation for validation of our consti-
tutive model under development and results from the
coupled DYNA-TOPAZ code effort. 

Future Work

We plan to concentrate on manufacturing simple
geometric shapes, such as cylinders, and improve
the process to decrease defects such as porosity. We
will use the system modeling code to determine
process parameters.

References

1. W. O. Miller (1999), “HOTDROP Operation
Guidelines,” Lawrence Livermore National Laboratory,
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133757), March.
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mproved Implicit Structural 
Finite Element Algorithms

Center for Computational Engineering

Introduction

Implicit nonlinear structural analysis has been
used for many years. Nevertheless, it can still be diffi-
cult to perform on many problems due to a variety of
numerical issues. Implicit finite element analysis has
been used most often for determining quasistatic
response of structural models, whereas explicit finite
element codes have typically been used for nonlinear
dynamics problems. Many structural dynamics prob-
lems occur over time spans that are quite long for
explicit analysis due to the Courant time step limita-
tion, but are too nonlinear or big for implicit dynamic
analysis. Seismic analysis, reentry vehicles and trans-
portation container vibration analysis are examples
of problems in the “gray area,” that is, highly nonlin-
ear, long term dynamics problems. 

Progress

Our work solves some of the numerical problems
inherent to the implicit method. 

The three fundamental difficulties for implicit
analysis are as follows:

1. Problem size: Implicit analysis requires the solu-
tion to a large system of linear equations which
is both memory- and computation-intensive.

2. Nonlinearity: Convergence of the nonlinear solu-
tion algorithm is severely impacted by the pres-
ence of contact surface unilateral constraints.

3. Stability: For nonlinear problems, Newmark’s
method is not, in general, unconditionally stable.

New parallel linear solvers have been imple-
mented into NIKE3D and others are in the works for
dealing with the large linear systems that are to be
handled. Furthermore, a new line of enhanced strain

elements was implemented into NIKE3D this year
which provides coarse mesh accuracy. These are
fully integrated elements based on extensions of our
work in single-point elements last year.1 With these
elements, an analyst can use a much smaller mesh
for the same amount of accuracy as a fine mesh with
the older element technology. In this report, we
highlight the new developments we have made in the
areas of convergence and stability.

Convergence

The primary culprits for convergence difficulties
are the nonlinearities from contact surface interac-
tions due to the non-smooth nature of the contact
surfaces. The finite element contact surface
comprises bilinear patches or facets. This discretiza-
tion causes jumps in contact forces at facet edges
and vertices making it very difficult for global conver-
gence of the Newton nonlinear solution algorithms.

To alleviate this problem, we have used 3-D bilin-
ear Hermitian surfaces to interpolate the bilinear
surface mesh, providing C1 continuity between
facets. A 2-D representation of this is shown in Fig. 1.
This provided a vast improvement in convergence of
the contact algorithm. 

For example, a solid sphere is contained within a
hollow sphere and pressed against the bottom by a
vertical pressure (Fig. 2). With the new smoothing
algorithm we get superior convergence compared to
the old method as demonstrated by the residual
energy norm produced during the nonlinear iteration
loop, as shown in Table 1 for a given time step. The
smoothed representation of the finite element mesh
model for the sphere is shown in Fig. 3. The
smoothed mesh shown in Fig. 3b was produced
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We developed new algorithms for contact and implicit dynamics. These algorithms were imple-
mented into the structural mechanics finite element code NIKE3D. The new algorithms provided a
more robust and efficient code and improved accuracy. A cursory description of the algorithms along
with representative numerical examples are presented here.

Michael A. Puso
Defense Technologies Engineering 
Mechanical Engineering



Center for Computational Engineering

using Mathematica.2 The grid lines are just the level
of discretization used for visualization (the true
mesh is totally smooth).

In the next example, a single block element is
pushed down and then dragged along a surface
(Fig. 4). This problem particularly illustrates the
improved performance when slave nodes encounter
new facets during sliding. With the old algorithm,
contact forces experience a significant jump when a
node changes facets during sliding due to the new
normal direction of the facet. The smoothed surface
for the configuration in Fig. 4b is shown in Fig. 4c.
The new algorithm provides quadratic convergence
as demonstrated by the energy norm results during
nonlinear iterations shown in Table 2.

Stability

Using Newmark’s method for example, the implicit
structural dynamics method can be shown to be
unconditionally stable for small deformation analysis.
For general nonlinear dynamic analysis, the implicit
method can become numerically unstable and often
does in the presence of large rigid body rotations or
severe contact impact. This is a pathological result of
the discrete time integration scheme and is not to be
confused with a mechanical instability.

With linear analysis, the spectral method is typi-
cally used for stability analysis. This is performed by
calculating the eigenvalues of the amplitude matrix
formed by the recursive integration algorithm. In

Engineering Research Development and Technology4-6

Table 1. Energy norm results for spheres.

Iteration # New method Old method

1 1.3394 × 102 1.3862 × 102 

2 1.0054 × 10–1 1.0287 × 102

3 2.4924 × 10–11 8.7395 × 10–2

4 4.9348 × 10–17 9.2101 × 10–7 

5  9.0672 × 10–7

6  2.9843 × 10–7

7  6.0875 × 10–7

8  5.2122 × 10–7

9  6.1894 × 10–7

10  1.1556 × 10–6

(diverged) 

(a)

(b)

Figure 2. Solid sphere pushed against bottom of hollow sphere.

Smoothed surface

FE mesh

Figure 1. Finite element faceted surface and interpolated
smooth surface.
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nonlinear implicit analysis, an amplitude matrix is
not available, so another method is necessary. In
particular, the stability in the energy sense can be
ensured when the appropriate algorithmic adjust-
ments are made. This was shown by Simo and
Tarnow3 for nonlinear elasticity, such that the “algo-
rithmic energy” is conserved when the constitutive
(material) evaluation is made appropriately. This
algorithmic energy balance is in terms of the
discretized nodal velocities and displacements. For
a closed mechanical system

vn+1 Mvn+1 + U(un+1) - vn Mvn - U(un) = 0 (1)

where vn is the vector of nodal velocities at time tn,

un is the vector of nodal displacements at time tn, M
is the system mass matrix and U is some given
strain energy function. Equation 1 balances the
energy at time tn and tn+1 such that velocity and
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Table 2. Energy norm results for block.

Iteration # New method Old method

1 2.0144 × 101 2.1177 × 101

2 4.5219 × 10–3 –4.2748 × 101

3 5.4617 × 10–7 –3.2830 × 101

4 1.3365 × 10–14 5.1037 × 103

5 1.0987 × 10–28 2.1842 × 102

6 1.3931 × 102

7  1.0540 × 102

8  8.4054 × 101

9  8.5236 
10  3.3749 × 101

(diverged) 

(a)

(b)

Figure 3. (a) Finite element model of sphere. (b) Smoothed
version of faceted finite element mesh shown in (a).

(a)

(c)

(b)

Figure 4. (a) Block loaded vertically and subsequently dragged
along surface. (b) Final configuration. (c) Smoothed represen-
tation of surface.
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displacements are bounded and stability is ensured.
In our work we generalize the energy conservation
method to include coupled rigid/flexible body
systems and contact with friction.

Ultimately, materials with plasticity will be
included. With these effects, the new algorithmic
balance is given by

vn+1 Mvn+1 + wn+1 Iwn+1 + U(un+1)

− vn Mvn - wn Iwn - U(un) = −D ≤ 0 (2)

where I is the rotational inertia of a rigid part, w is
the rigid body’s rotational velocity and D is a positive
amount of dissipation due to friction. We call this
the algorithmic energy-consistent method. This new
method is an extension of previous work.4–5

In the first example (Fig. 5), a pulse moment is
applied at the base of rigid/flexible top. The base is a
rigid material and the cone is flexible. The top is simu-
lated using the new energy-consistent method and the
classical trapezoid method. The resulting nodal velocity
of a point near the top’s tip is shown in Fig. 6. From
Fig. 6, the trapezoid method is seen to become unstable
for both the large (∆t = 0.1) and small (∆t = 0.01) time
steps. The new energy method remains stable (inde-
pendent of time step) as guaranteed by Eqs. 1 and 2.

Engineering Research Development and Technology4-8

(a)

(b)

Figure 7. Flexible ring within a fixed rigid box. The ring is
initially against the left wall and is given an initial velocity at
45° from the vertical. (a) The displacement pattern resulting
from the new energy method. (b) The pattern resulting from
the old trapezoid method.
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Figure 5. A pulse moment applied to a top with a rigid base
and flexible cone.
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In the next example (Fig. 7), a stiff flexible ring
placed within a fixed rigid box is given an initial
velocity at a 45° angle from the rigid wall. With the
energy-consistent method, the ring bounces within
the box in the expected way, returning almost
exactly back to its original position in a given cycle
(Fig 7a). With Newmark’s trapezoid rule, the ring

picks up energy at the boundary and eventually
becomes unstable (Fig. 7b). The algorithmic
energy is plotted versus time in Fig. 8 for the ring
in box.

In the final example, the effects of frictional
dissipation are demonstrated. In Fig. 9, two flexi-
ble balls are given an initial velocity within a rigid
(unfixed) box. The balls then bounce around within
the rigid box as shown in the sequence in Fig. 9.
Since friction is included the new energy-consistent
method dissipates algorithmic energy as shown in
Fig. 10. The trapezoid rule gains energy despite
the friction.

Future Work

We have demonstrated the results of significantly
more robust implicit finite element algorithms.
Consequently, we are able to solve many new prob-
lems that were previously intractable.

Currently we are in the process of adding friction
to the contact smoothing algorithm and adding the
logic for determining locations in a mesh where
smoothing is to be neglected. Furthermore, we are
developing a complementary solver for computing
the Lagrange multiplier contact forces more effi-
ciently than the current augmented Lagrange
method used in NIKE3D.

For implicit dynamics, we anticipate adding the
dissipation effects of plasticity. We would also like to
look at alternative conserving (or nearly conserving)
algorithms that are simpler to implement.
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Figure 9. Sequence of configurations of flexible balls bouncing
within a rigid box.
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ost-Processing and Data Management 
Software Development for Computational Mechanics
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Introduction

In FY-99 we made considerable progress in the
post-processing and data management areas of
computational mechanics at LLNL. The unifying
theme of our accomplishments in these areas is
greatly improved flexibility. This leap forward was
enabled and driven by the introduction of Mili (Mesh
I/O Library), a library for reading and writing self-
defining simulation databases. With our finite
element post-processor, GRIZ, we completed a
major redevelopment effort to accommodate the
flexible data content permitted in Mili file families. 

As a first step in integrating Mili into the analy-
sis codes, code developers implemented modules
in DYNA3D/ParaDyn and NIKE3D to write out the
current collection of state variables to a Mili file
family. Enhanced flexibility for post-processing
extended to the parallel computing domain with
the implementation of a prototype parallel render-
ing of GRIZ.

A second theme is improvement and formaliza-
tion of our software development process. Building
on an existing practice of maintaining source code in
a repository accessed only by version control soft-
ware, we added a web-based application for submis-
sion and management of software change requests
and trouble reports. Additionally, a regression test
suite was developed for GRIZ to automate the labori-
ous process of validation testing new releases.

Progress

Mili Version 1.0

Version 1.0 of the Mili library was released to
developers simultaneously with GRIZ 4.0, the new
version of GRIZ that reads the Mili database. Mili
accomplishes its primary goal of creating self-
defining simulation databases by letting applications
define formats that document the contents of state
records to be written during a simulation. An appli-
cation that reads the simulation database first reads
the format descriptions to learn how to interpret the
state data in the database.

Mili uses a conceptual model of an unstructured
finite-element mesh as a collection of mesh objects
(such as nodes or elements) for which simulation
state data exists that an application may need to
save to disk. Mesh objects with like topological and
physical characteristics are grouped together in
mesh object classes, each of which is identified by a
unique class name. For example, hexahedral
elements in a mesh might belong to a class called
“brick.” The application creates as many mesh
object classes as necessary to fully define the mesh
for data output.

As like objects make up a class, so can multiple
classes be derived from the same superclass. Mili
defines a set of superclasses that provide the basic
semantics for each class created by the application.
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Put another way, a class is a named instance of a
superclass, and one of the parameters specified by
the application when a class is created is its super-
class. Table 1 identifies the superclasses currently
defined by Mili. 

The reason for this superclass>class>object hier-
archy is flexibility. From the superclass, an applica-
tion knows very basic information about the class
and therefore how to operate on it generally. For
example, both m_quad and m_tet imply element
mesh objects with four nodal connectivities, but a
m_tet element is inherently 3-D and has obvious
computational or rendering requirements associated
with it, whereas a m_quad element can be either 2-
or 3-D and has different associated requirements.
With superclasses, Mili provides a logical shorthand
for communicating basic information about groups
of objects.

By permitting (demanding) applications to create
classes, Mili allows specialization within a super-
class. The superclass conveys common characteris-
tics and the class confers some amount of unique-
ness. This is useful when objects that might be
identical at the superclass level are in fact modeled
differently and mean something different to the
analyst. For example, DYNA3D supports both thick
shell elements and hexahedral volume elements,
both with eight nodal connectivities. For writing
data to the old TAURUS plot database, DYNA3D
must combine both types of elements into that data-
base’s single collection of eight-noded elements. In
post-processing, any original distinguishing informa-
tion is lost and the analyst must know a priori which
“bricks” are really bricks and which were thick
shells in the analysis. Under Mili, DYNA3D can

create separate classes, each derived from super-
class m_hex but having different class names, to
allow each type of element to be explicitly identified
in the output and subsequent post-processing.

Additional flexibility is available through Mili
because the objects of a particular class can be
subdivided on output for customizing the set of state
variables being written. The most natural example of
this would be a division of the elements within a
class along material lines, since differing material
models in the analysis would confer different sets of
state variables for the participating subsets of
elements.  Finally, Mili also permits applications to
define multiple state record formats in a single data-
base. This opens the door to varying the amount of
data being written dependent upon activity in the
simulation.

GRIZ Version 4.0

The flexibility permitted in a Mili database repre-
sents a great change from the previous TAURUS plot
database, and large parts of GRIZ were re-written
(or invented) to accommodate the new features.
GRIZ version 4.0 (GRIZ4) is the outcome of this
redevelopment effort. The goal in producing GRIZ4
was to have GRIZ change outwardly as little as
possible while accommodating the potential variabil-
ity in a Mili database. Most of the command-set
changes were made to accommodate the variable
nature of database contents under Mili. For
instance, commands that formerly required a para-
meter such as “node,” “brick,” or “shell” to indicate
the object type of a numeric identifier now require a
class name instead.

Visually, there are few changes in GRIZ4. Most
apparent is the replacement of the previous “Result”
pulldown menu with two new menus, “Derived” and
“Primal.”  The Derived menu essentially holds the
contents of the old Result menu, but the menu
contents adapt to display only results that can be
derived from the contents of the current database.
The Primal menu allows access to all results written
into the current database, without any derivation or
transformation applied.

Through the Primal menu, GRIZ4 offers access to
global mesh results and material results in both Mili
and TAURUS databases. These data have been writ-
ten to the TAURUS database for some time but were
not previously accessed by GRIZ.

GRIZ4 does not support data from all Mili super-
classes equally. There is no support for m_wedge or
m_pyramid elements in 3-D rendering. Also, Mili’s
m_unit superclass, which by design has no semantics
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Table 1. Mili object superclasses.

Class Node 
name quantity Object type

m_unit N/A Arbitrary  
m_node 1 Node  
m_truss 2 Truss  
m_beam 3 Oriented beam  
m_tri 3 Triangle  
m_quad 4 Quadrilateral or shell 
m_tet 4 Tetrahedron  
m_pyramid 5 Pyramid  
m_wedge 6 Wedge or prism
m_hex 8 Hexahedron or brick  
m_mat N/A Material  
m_mesh N/A Mesh  
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associated with it, cannot be related by GRIZ4 to the
mesh in any way that is guaranteed to be generally
useful for rendering. However, data from every class
in a database, regardless of its superclass, can be
read by GRIZ4 and plotted as a time history curve,
so GRIZ4 has some utility even for object types it
doesn’t fully support.

Aside from the new adaptive menus, the only
other visual change in GRIZ4’s graphical user inter-
face is on the Utility Panel. There, users now have
the option of assigning any node or element class to
any mouse button for picking operations, instead of
the previous option to assign the middle mouse
button to pick either shells or beams.

GRIZ’s time history plotting capability was
completely reworked for GRIZ4. Although the old
“timhis” command is still supported, the new “plot”
command provides users with much more capability
and flexibility. Patterned after the THUG time history
plotter’s “plot” command, GRIZ4’s “plot” accepts the
specification of multiple results and/or mesh
objects, generating a curve for every result/object
pair supported by the database. GRIZ4’s “plot”
command syntax also permits parametric plotting of
one result versus another result from the same mesh
object (multiple objects allowed) with time as an
implicit parameter. Additional development is
planned, as the old legend is inadequate to describe
the complexity now possible in time series plots.

Although GRIZ4 was developed primarily with the
goal of integrating Mili into it, we knew from the
outset that GRIZ4 would need to read both Mili and
TAURUS databases, and considering developments
under ASCI there was potentially a strong need to
support additional I/O library interfaces as well. To
accommodate multiple I/O interfaces, the GRIZ I/O
(GIO) layer was implemented to abstract details of
any particular I/O library and provide a common
high-level internal interface to I/O functions. To
interface to a given I/O library, a “driver” is written
which provides the correct function interfaces for
GIO but calls the desired I/O library internally.
GRIZ4 has drivers for Mili and the TAURUS plot
databases built in; other drivers can be added as
dynamically-linked shared objects.

GRIZ4 Parallel Rendering Prototype

Pre- and post-processing are the two major
bottlenecks facing code users in the parallel
domain. This year we took a significant step to ease
the post-processing bottleneck by developing a
prototype parallel renderer in GRIZ4. We imple-
mented a master/slave approach in which the

master processor manages the user interface and
the slaves perform the parallel rendering. In the
rendering algorithm, each processor renders its
local mesh partition (determined by the domain
decomposition from the analysis phase) followed by
a global reduction of pixel red/green/blue values
from all processors’ images based on pixel Z (depth)
values. In the final composited image, each pixel’s
color is taken from that initial image for which the
depth value of the pixel was smallest (the pixel clos-
est to the view eyepoint). 

The parallel implementation was not intended as
a production-ready solution but as a first step and
baseline for experimentation and further develop-
ment. Indeed, in using the domain decomposition
from the analysis phase, we are almost assured of
poor load balancing for rendering because only
those local domains that have visible elements
facing the view eyepoint can contribute pixels to the
final image—the rendering effort on all other
processors is wasted. Nevertheless, this was an
attractive approach because of its simplicity and the
fact that it offered the opportunity for parallel
speedup while using the same serial rendering
library (OpenGL) GRIZ already relies upon.

The parallel implementation must use offscreen
rendering to memory, since the compute nodes of a
parallel computer lack displays to render to. This
has a beneficial by-product since it opens the door
to “batch-mode” offscreen serial rendering as well, a
long-sought capability for GRIZ.

Parallel-rendering GRIZ4 is still very much in the
experimental stage. One of our priorities for the new
fiscal year is to evaluate and profile the performance
of this initial approach across an array of mesh
sizes and processor quantities, then set the direc-
tion for a follow-on implementation leading to a
production solution.

Combiner/Splitter Utility

An identified requirement associated with parallel
processing is the need to remap the parallel outputs
from an analysis run onto a different quantity of
processors for subsequent post-processing or an
analysis restart. In a similar vein, ParaDyn analysts
need to combine n parallel Mili databases into one
for serial post-processing. We met these needs by
developing a combiner/splitter utility. Developed as
a callable library with a driver program to provide
the command-line interface, this utility will read
multiple parallel Mili or TAURUS databases, plus the
analysis partition file, and combine them (with
translation, in the case of TAURUS) into a single Mili
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database. The splitter code reads a second partition
file for the target distribution of data and splits a
single Mili database into the required number of
parallel databases.

Web-Based Change-Request Tracking

In the past year, several factors combined to
elevate the visibility of our software development
process and the need for formalization. Fueled by
ASCI funding, the growth in the number of code
developers participating in graphics and data
management software development highlighted the
need for standardized conventions in our process
and the use of software engineering tools. The de
facto process arising from the old “one code, one
code developer” environment is inadequate for a
team of developers.

Taking advantage of LLNL’s Computation
Directorate’s Software Technology Center, we
requested a SCRTrack server to provide web-based
management of software change requests (SCRs)
and trouble reports. SCRTrack provides “cradle-to-
grave” maintenance of SCRs on a product-by-prod-
uct basis with support for a comprehensive set of
user roles and SCR status conditions, plus automatic
email notification of SCR state transitions. GRIZ4,
Mili, and the GRIZ User Manual have been entered
as products into the server, with plans for other
codes to follow.

Regression Testing

Another aspect of the software process is quality
assurance. One requirement associated with the
release of GRIZ4 was the need to validate results
against those from GRIZ version 2 (GRIZ2). This
requirement manifests itself two ways. First, GRIZ4
must produce the same results as GRIZ2 when read-
ing the same TAURUS database. Second, GRIZ4
reading a Mili database must produce the same
results as GRIZ2 (or GRIZ4) reading results from the
same analysis written out in a TAURUS database.

We developed a test script, written in the Python
scripting language, that uses a standard set of DYNA
and NIKE test problems and a collection of associ-
ated GRIZ command scripts to provide a basic valida-
tion of GRIZ4 with a comprehensive set of mesh
configurations. The testing is not exhaustive in exer-
cising all possible GRIZ capabilities, but it does thor-
oughly exercise data access and result computations
and provides a baseline upon which to build addi-
tional testing capabilities. This addition to the GRIZ
development process is valuable since it offers a
great productivity boost for releasing GRIZ updates.

GRIZ4 ExodusII Driver

During the year, collaborators at Los Alamos
National Laboratory (LANL) requested GRIZ modifi-
cations to read the Exodus II databases generated
by Sandia’s Pronto analysis code. With GIO devel-
oped for such a purpose, GRIZ4 is ideally suited for
this effort. By year’s end, GRIZ4 supported
ExodusII, and it is currently in use by Engineering
Services at LANL.

ASCI DMF Integration

Another I/O library compatibility requirement
arises out of the ASCI program and its Data Models
and Formats Application Programming Interface
(DMFAPI), currently in active development. One of
our goals under ASCI is to support DMFAPI in our
“ASCI” analysis codes and in the GRIZ post-proces-
sor. GRIZ4’s GIO layer again offers a natural entry
point for integrating the DMFAPI, but ParaDyn has
no equivalent abstraction layer in its output code.
Our chosen approach for ParaDyn, which follows a
pattern established at Sandia and at LLNL, is to
layer our current API (Mili) on top of the DMFAPI.
This allows us to write out ASCI format databases
with few if any source changes in ParaDyn.
Essentially, only a re-link is required, replacing the
Mili library with a new one that consists of the DMF
library and a set of wrapper functions that conform
to the Mili API.

The DMFAPI uses a very general data model with
a strong, abstract mathematical foundation. It repre-
sents a significant departure from other I/O library
APIs. We have layered Mili’s output calls over
DMFAPI to enable ParaDyn to write out a DMFAPI
database. The DMFAPI is still evolving, and with
continued effort, its capabilities will be supported in
other codes. 

Future Work

Mili enables many changes, so it emerges as a
natural focal point for additional development. Mili’s
design is such that supporting additional super-
classes is straightforward, and one such superclass
already identified for inclusion is a “surface” or
“face list” superclass. A surface object would be an
arbitrary set of 3-D element faces, quad elements,
or triangular elements that have special significance
in the generating application. For example, a
surface might be defined where a boundary condi-
tion is being applied in a simulation, or it might be a
contact surface for which information exists in the
simulation not found on all elements in general.

Engineering Research Development and Technology4-14



Center for Computational Engineering

Another necessary capability that code developers
have identified is restart management of the database;
specifically, the ability to overwrite state records at an
arbitrary point in the simulation. Our analysis codes
implement slightly different approaches to this, so a
generalized approach is needed.

The planned restart support will be impacted by a
more recent requirement for Mili. An inter-code
“link” file capability developed for the analysis codes
is now scheduled to be re-expressed under Mili. This
file was originally developed to convey state infor-
mation between NIKE3D and DYNA3D. It is also now
being used as a “lightweight” DYNA3D restart file.
Implementing a Mili version of the link/stress-restart
file imparts greater flexibility in its use (for instance,
building on GRIZ4’s Mili compatibility, it opens the
door to visualizing the link file) and provides an
organized framework for ongoing extension of the
file’s contents.

As mentioned above, GRIZ4’s prototype parallel
rendering capability is scheduled to receive attention

in FY-01. First we will characterize the prototype’s
performance over an array of problem sizes and
processor quantities. This is expected to be
followed by profiling to identify where bottlenecks
lie in the current approach. These efforts will
support a subsequent re-design of GRIZ4’s parallel
rendering software. 

Our software process improvement activities will
continue into the new fiscal year. We have two prior-
ities in this domain. First, we will expand use of
SCRTrack to include other codes and user manuals.
Second, we plan to develop software scripts which
will interact with our source repository during
release builds and automate versioning of applica-
tion binaries (specifically GRIZ, but the motivation
applies to all our codes). 
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inear Equation Solvers 
for Parallel Computational Mechanics
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Introduction

The Accelerated Strategic Computing Initiative
(ASCI) program at Lawrence Livermore National
Laboratory (LLNL) is tasking LLNL’s Methods
Development Group with the creation of a parallel
implicit mechanics code. This effort builds upon our
longstanding expertise in serial implicit finite-
element codes for stress analysis (NIKE) and ther-
mal analysis (TOPAZ), and will complement its ongo-
ing development of the parallel explicit capability of
the PARADYN code. 

For present purposes, the fundamental difference
between implicit and explicit simulation codes is
that implicit codes use much larger step sizes for
time integration. This makes implicit techniques
suitable for modeling steady-state and low-frequency
response, but this ability requires the solution of a
set of linear equations at least once per time step.
For the nonlinear materials and large-deformation
phenomena typically modeled with NIKE, multiple
linear solves are required at each time step. Hence,
solving linear equations almost always represents
the single largest share—at least 50%—of the over-
all computational cost in 3-D implicit simulations.

Linear equation solvers are typically divided into
two classes: direct and iterative. Direct methods are
known for their robustness and predictable number
of operations. However, they require a global data
structure that grows rapidly with problem size.
Further, the algorithms used in direct solvers
present challenges for large-scale parallelism.

Iterative methods typically use a much smaller data
structure that can be readily distributed for large-
scale parallelism. Yet they often perform poorly on
problems exhibiting characteristics quite common in
our simulations: material softening and damage,
material anisotropy, mesh refinement to capture
local effects, combined bending and membrane
response of shells, and near-singularities as buck-
ling behavior is approached. In addition to their
memory and/or time cost, linear equation solvers
can add significant complexity to the software archi-
tecture needed to support large-scale parallel
computers. So, in designing the new parallel implicit
code we not only need to incorporate the experience
of PARADYN’s development, but we must also extend
it to address these added issues. In preparation for
that design phase we have been performing studies
of two linear solvers.

Progress

PSPASES Sparse Direct Solver

This solver was developed in the research group
of Profs. V. Kumar and G. Karypis at the University of
Minnesota.1 We have previously interacted with this
academic team that created the graph partitioning
utility METIS used by PARADYN as part of its overall
domain decomposition preprocessing. (The METIS
package is also used by many other parallel applica-
tions developed throughout the world.) This same
partitioning technology has now been applied to the
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issue of equation reordering for efficient sparse
direct equation solving on distributed memory
machines. The PSPASES package solves symmetric,
positive-definite systems of equations and must use
a collection of 2N processors, where N is an integer.

We are evaluating this solver technology and moni-
toring its evolution. Last year we created a simple
prototype of a “master/slave” architecture. The first
processor is essentially running the serial NIKE code:
it performs all I/O, computes the finite-element matri-
ces and assembles the global system of linear equa-
tions. At that time, the remaining 2N-1 processors are
sent portions of the global equation system, and then
all processors execute PSPASES to reorder and solve
the system. This solution is then consolidated on the
first processor where the remainder of NIKE’s serial
algorithms continue execution.

Obviously such a prototype is not a long-term
approach to creating a production capability. But it
has allowed us to exercise PSPASES within the
context of a nonlinear finite-element code and
provide feedback to its developers. For example, we
identified and documented an anomaly in total
memory use that occurred when multiple pairs of
matrix reordering and factorization were requested
in sequence. This is a fundamental requirement for
nonlinear finite-element codes, but one not tested
by the typical “test driver” that simply reads in a
pre-computed matrix and does a single set of
reordering/factorization/backsolve operations. With
these data the developers were able to locate and
correct the programming error, and memory usage
has been verified to be essentially constant under
the circumstances described. A growth in factoriza-
tion CPU time has been documented for some situa-
tions and that information has also been passed to
the developers.

Figure 1 shows a mesh used for some of the
performance benchmarking. It is a subset of an overall
model created by P. Raboin and S. Creighton for the
Modal Analysis Correlation Experiment being under-
taken jointly by LLNL, Sandia National Laboratories
and the United Kingdom’s AWE. This particular mesh
leads to a linear system having 250,007 degrees of
freedom. The factorized form of the matrix contains
180 × 106 nonzero entries and requires 330 × 109

floating-point operations to compute. 
Figure 2 shows timing data for this problem from

runs on the ASCI “Blue Pacific” IBM SP system. The
log2 of wall time for matrix factorization is plotted
versus log2 of the number of processors used. The
dashed line represents perfect scaling: the timing of
each doubling of processors exactly halved the
execution wall time. The PSPASES data show good

scalability from 16 to 256 processors: each doubling
of processors results in a 40% reduction in wall time.
(Stated differently, each doubling of processors
provides a 67% speed-up.) That the scalability
suffers when pushed to 512 processors is not
surprising, since that represents only 500 equations
per processor and thus not many floating-point oper-
ations to amortize the increasing communication.
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Figure 1. Mesh for a sub-assembly of the Modal Analysis
Correlation Experiment (MACE). This mesh generates a system
of 250,007 linear equations for stress analysis.
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Figure 2. Timing data for the MACE benchmark run on the
ASCI “Blue Pacific” IBM SP system.
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This work demonstrates that a distributed sparse
direct equation solver can remain a viable methodol-
ogy for implicit mechanics on at least hundreds of
processors. This point had been in doubt–it is not
uncommon to hear opinions that “direct solvers
cannot scale beyond 8 or 16 processors.” While
hundreds of processors represent only a fraction of
an ASCI platform, it already would provide more
than an order of magnitude increase in the size of
implicit simulation we can perform in support of our
engineering missions. The scalability of a direct
solver on thousands of processors will be a longer-
term issue, and motivates our examination of hybrid
methods that combine iterative and direct equation
solving technologies.

FETI

The Finite-Element Tearing and Interconnecting
(FETI) method is a Lagrange-multiplier-based
domain decomposition method. As a hybrid method,
it has the potential of combining the best of both
worlds, namely, the robustness of direct solvers and
the scalability of iterative solvers as the number of
processors is increased. Our work in this area has
focused on developing a serial prototype of the FETI
level 1 method,2 with the aim of understanding the
behavior of these methods on problems of interest
to LLNL.

In the FETI method, the computational domain,
Ω, is partitioned into Ns non-overlapping subdo-
mains, Ω(s). Lagrange multipliers, λ, are introduced
at the subdomain interfaces to enforce the compati-
bility of the subdomain generalized displacements,
u(s). As a result, the original linear system over Ω,

Ku = f (1)

where K, u, and f are the stiffness matrix, the
displacement vector and the force vector, respec-
tively, is reduced to the equivalent set of equations:

for s = 1,…, Ns (2a)

(2b)

where, for each subdomain Ω(s), the variables K(s),
u(s), and f(s), denote the generalized stiffness matrix,
the generalized displacements, and the generalized
force vectors for that subdomain, respectively. The
matrices B(s) are signed Boolean matrices that
extract from a subdomain vector its signed contribu-
tion to the interface boundary of the problem. 
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If each of the subdomain stiffness matrices are non-
singular, then we can solve for the subdomain
displacements by first substituting u(s) from Eq. 2a
into Eq. 2b and solving for λ, and then using Eq. 2a to
solve for u(s). However, in practice, the domain decom-
position process often generates one or more floating
subdomains which do not have enough prescribed
displacements to eliminate the local rigid body modes,
resulting in a singular system in Eq. 2a for the corre-
sponding subdomain. If this system is consistent, then
the displacement u(s) for the floating subdomain Ω(s)

can be written in terms of λ as follows:

(3)

where K(s)+ is the pseudo-inverse of K(s), R(s) is the
matrix of rigid body modes of Ω(s), and α(s) is a vector
of unknowns that determines the contributions of each
of the rigid body modes. By the definition of rigid body
modes, the columns of R(s) form the basis of the null
space of K(s). The introduction of the new unknowns
α(s) requires additional equations which can be
obtained from the observation that for the singular
equation to admit a solution, the right hand side must
have no component in the null space of K(s), that is

(4)

Combining Eqs. 2a, 2b, 3, and 4 for all the domains
in the problem, the FETI interface problem becomes

(5)

where

where Nf is the number of floating subdomains in the
problem. The matrix K(s)+

reduces to K(s)–1
for non-

singular systems.
While the matrix FI is symmetric positive-definite,

the system matrix in Eq. 5 is indefinite, and we
cannot directly apply the conjugate gradient method
to solve for the Lagrange multipliers. However, we
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observe that Eq. 5 is equivalent to solving the equal-
ity constraint problem

Subject to 

This implies that we can use the conjugate gradi-
ent method with projected gradient to solve Eq. 5,
with FI as the system matrix, d as the right hand side
and λ as the unknowns. The conjugate gradient with
projected gradient technique is identical to the conju-
gate gradient algorithm, but, in addition, it ensures
that the constraint is satisfied at each iteration. If we
choose the initial λ to satisfy the constraint, that is,

then the constraint is satisfied at each iteration if

which can be ensured by projecting the direction
vectors in the conjugate gradient method onto the
null space of , using the projector

.

As with the standard conjugate gradient method,
the performance of the basic conjugate gradient
with projected gradient method can be improved
through the use of preconditioning. Farhat and
Roux3 suggest the following two preconditioners:

Lumped:  

Dirichlet:  

  
F B

K K K K
BI

s

s

N

bb
s

ib
s

ii
s

ib
s

s
s

T

T−

=
=

−








∑ −

1

1

0 0

0
1

( )
( ) ( ) ( ) ( )

( )

  
F B

K
BI

s

s

N

bb
s

s
s T−

=
=









∑1

1

0 0

0
( )

( )
( )

  
I G G G GI I

T
I I

T− ( )−1

GI
T

  GI
T

kλ = 0

λ0
1= −G G G eI I

T
I( )

 G eI
T λ =

  

Minimize
F G dT

I
T

Iλ
λ λ λ λ αΦ( ) = − +1

2
( )

where the matrix K(s) is partitioned as

where the subscripts i and b indicate interior and
boundary variables, respectively. Note that the
Dirichlet preconditioner is a better approximation to
the inverse of F1, albeit a more expensive one. 

We have implemented a serial version of the FETI
level 1 method in Fortran 77. The current version of
the code can handle cross-points in the decomposi-
tion as well as heterogeneous domains.4 The subdo-
main problems that arise in the application of the
conjugate gradient with projected gradient technique
are solved using a skyline solver. While this is not the
most efficient direct solver, it does enable easy calcu-
lation of the pseudo-inverses and rigid body modes.2

To understand the behavior of the FETI method, we
experimented with the problem in Fig. 3, which
solves the equations of static equilibrium for a simple
2-D bar extension problem using quadrilateral
elements. The problem has four subdomains, with a
single cross-point where the four subdomains meet.
Subdomains 2 and 3 are floating subdomains with a
single rigid body mode each, while subdomain 4 has
three rigid body modes. The iterations of the precon-
ditioned conjugate gradient with projected gradient
method are stopped when the two norm of the
preconditioned projected residual is less than 10-8.
Further details on the implementation of the method
are given elsewhere.5

Table 1 lists the iterations for the FETI method for
our simple test problem as the properties of the
subdomain are varied to represent problems of inter-
est to LLNL. We observe that the number of iterations
required for convergence, especially with the Dirichlet
preconditioning, remains constant as the problem is
made more ill-conditioned. Note that these are the
iterations required to solve the interface problem
using the preconditioned conjugate gradient with
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Subdomain 3 Subdomain 4

Subdomain 1 Subdomain 2

Figure 3. Test prob-
lem for FETI
level 1.The global
problem has 94
equations, while the
interface problems
has 38 equations.
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projected gradient method. Finally, to compare the
performance of the FETI method with standard itera-
tive schemes, we present in Table 2 the results of
solving the global system using the iterative solvers
from Compaq’s DXML solver library.6 This data
shows that while standard iterative solvers may work
in some problems, they are not always scalable as the
problem becomes more ill-conditioned. 

These early results demonstrate that the FETI
technique shows promise of being a viable method

for solving ill-conditioned problems when the source
of ill-conditioning arises from commonly occurring
situations in LLNL simulations. The scalability of the
FETI method on problems of a size of interest to
ASCI has already been demonstrated7 on the ASCI
option Red supercomputer. However, as outlined
below, several additional experiments are necessary
before we can say that the FETI method can solve
difficult problems of interest in an efficient and
effective way on massively parallel machines. 
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Table 1. Iteration counts for the FETI method on the test problem in Fig. 3. The iterations are for the solution of the interface problem
using preconditioned conjugate gradient with projected gradient technique.

No Lumped Dirichlet
preconditioning preconditioning preconditioning 

Problem 4 Homogeneous stiffness 22 13 10

Problem 4a 25 13 10
Subdomain 4: 10× stiffer 

Problem 4b 24 13 9
Subdomain 4: 1000× stiffer 

Problem 4c 34 17 10
SD1: 100×, SD2: 10×, SD3: 1×, SD4: 1000×

Problem 4d 22 34 15
Homogeneous, 
nearly incompressible elasticity

Problem 4d 20 27 12
With re-orthogonalization

Table 2. Iteration counts for standard conjugate gradient techniques with various preconditioners applied to the global system
obtained from the problem in Fig. 3.

No Diagonal Polynomial ILU
preconditioning preconditioning preconditioning preconditioning

Problem 4a 94 (close to the 67 48 25
solution)

Problem 4b 94 (not close to 86 62 34
the solution)

Problem 4c 94 75 55 28

Problem 4d No convergence No convergence No convergence Preconditioned
matrix not

positive-definite

Tolerance: 10–8

Maximum iterations permitted: 94
Order of polynomial preconditioner: 2
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Future Work

Our work with PSPASES will now be folded into the
on-going design effort for LLNL’s new parallel implicit
mechanics code. By considering from the outset the
requirements of both direct and iterative/hybrid equa-
tion solvers, the code will incorporate methodologies
suitable for a broad range of simulations. The numerical
robustness of the sparse direct solver will also be
useful during the development of the code, as it will
permit us to focus on other aspects of the code’s over-
all behavior and performance.

Our work on the FETI level 1 method has so far
focused on simple 2-D problems, where the
subdomains are homogeneous, though the mater-
ial properties may be different across subdo-
mains. To ensure that this method is indeed a
versatile one, we need to repeat our experiments
on simple 3-D problems, and study the effects of
heterogeneity when it occurs within a subdomain.
We also plan to study the effects of changing the
aspect ratio of the subdomains. The subdomain
aspect ratio is an important factor in determining
the convergence of the FETI method.3 If we use a
mesh partitioning software such as METIS, it is
not clear if it will provide subdomains with near-
unity aspect ratios, or if additional work will be
required, especially as the simulation evolves over
time and the partitioning changes.8, 9
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IGER Preprocessor and User Interface
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Introduction

Modern software engineering methods enable
analysis tools development with an unprecedented
degree of flexibility in incorporating different formula-
tions for advanced physics, and numerical methods
for a single self-consistent solution. This in turn yields
general-purpose tools, such as the EIGER1–4 software
suite, with an unparalleled range of applicability.

Current applications include advanced micro-
electromechanical machines (MEMMs), microwave
components (RF isolators and splitters), radar
cross-section (RCS) analysis, broad-band antenna
design, frequency-selective surface design, Navy

ship topside design, and phased array analysis and
design. This wide variety of applications on one hand
and the extensive set of features and options in the
computational tools on the other hand yield a tech-
nology gap that must be bridged to successfully
transition this technology to the various user
communities both within and outside Lawrence
Livermore National Laboratory (LLNL).

Progress

The graphical user-oriented interface (EIGER Build)
is a principal part of the EIGER framework (Fig. 1) for
frequency-domain electromagnetics analysis. It assists
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Our goal is to facilitate the use of advanced computational electromagnetics (CEM) tools by appli-
cation designers and analysts. Specifically, this entails developing an advanced preprocessor and
graphical user interface (GUI) for frequency-domain electromagnetics codes (for example, EIGER).
The preprocessor reads and interprets the mesh files that are output from commercial mesh genera-
tion packages, and assists with the decisions and assignments that are needed to perform the requi-
site CEM analysis. The complexity of the geometry often requires automated diagnostics to ensure
proper connectivity and discretization of the problem. In addition, the wide variety of analysis options
available in the new generation of CEM tools necessitates an interface that assists users with the
decision process and problem setup so that designers may concentrate on their specific analysis
rather than on the CEM issues.

Robert M. Sharpe, Nathan J. Champagne, and Andrew J. Poggio
Defense Sciences Engineering Division
Electronics Engineering

CAD/Mesh
(IDEAS)

CAD/Mesh
(PATRAN)

CAD/Mesh
(Others)

EIGER
Build

EIGER
Visual

EIGER
Solve
(HPC)

EIGER
Analyze
(HPC)

Design environment (user interface)

Figure 1. The four
components of the
EIGER Framework.
EIGER Build is the
graphical preproces-
sor; EIGER Solve is the
physics engine; EIGER
Analyze is the physics
post-processor; and
EIGER Visual is the
graphical post-
processor.
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designers in the most time-consuming and error-prone
portions of a CEM simulation—the problem setup and
definition phase. Simulation files are created in EIGER
Build based on a project concept.

The project contains all of the components
needed for a CEM model, such as the geometry, the
boundary conditions, and the excitations. The
meshed geometry is created by a CAD/mesh
program, such as PATRAN or I-DEAS, and then read
into EIGER Build. The discretized geometry is visu-
ally inspected in EIGER Build for errors. If the mesh
is satisfactory, CEM-specific information to the
geometry is interactively applied to complete the
simulation model. By storing the simulation model in
a project file, any minor updates made in the CAD
program will not adversely affect the project. This
allows, for example, geometrical parameter studies
to be done with minimal effort.

An EIGER Build project is composed of a set of
databases. The entries in each are associated, by
EIGER Build, with parts of the geometry or the
model as a whole. The databases include:

1. visuals, for controlling the appearance of the
geometry;

2. boundary conditions, for specifying the presence
of electric and magnetic currents;

3. integral equations, for enforcing the selected
boundary conditions;

4. materials, for augmenting the geometry infor-
mation with electromagnetic properties;

5. plane waves and voltage sources, for exciting
the model;

6. lumped loads, for representing ports; 
7. spectral information, for picking the desired

frequencies and modes;
8. far-field sampling points, for describing grids of

angles at which far-field calculations are
desired; and 

9. near-field sampling points, for describing grids of
points at which total field calculations are desired.

A sample input database form for a plane wave
excitation is shown in Fig. 2.

There are several analyses that are performed to
assist in geometry validation. The analyses are done
automatically after a mesh is read into EIGER Build.
However, these analyses can be redone via menu
selections that produce visual results. The different
analyses available are as follows: 

Boundary edges. The surface elements in a mesh
are analyzed for open boundaries. These are edges of
any surface element that do not connect to another
surface element. This collection of element edges can
be thought of as the apertures. This analysis is used to
look for unintended (or missing) apertures in a model.

Joint edges. The surface elements in a mesh are
analyzed for multiply connected boundaries. These
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Figure 2. Database
input screen for
a plane wave
excitation.
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are edges of any surface element that connect to
more than one other surface element. This analysis is
used to look for unintended (or missing) contact sites.

Surface edges. The surface elements in a
mesh are analyzed for singly connected edges.
These are edges of any surface element that
connect to exactly one other surface element. This
collection of element edges can be thought of as
the ordinary edges of the mesh. As such, its infor-
mation is limited, but it does provide the comple-
ment of the other surface element analyses. This
analysis is used as an eyeball aid while viewing
other analyses.

Wires. The wire elements in a mesh are collected
into a single group. This collection provides a simple
way to view all the wires at once. The collection
even includes wire elements that were not put into
groups. This analysis is used to verify that all of the
wires are present.

Free wire ends. The ends of wire elements in a
mesh are analyzed for unattached ends. These are
ends of any wire element that do not connect to
another wire or surface element. This analysis is
used to verify that all of the wires are properly
attached to the geometry.

Junction wire ends. The ends of wire elements
in a mesh are analyzed for ends touching surfaces.
These are ends of any wire element that connect to

at least one surface element. This analysis is used to
verify that all of the appropriate wires are properly
attached to the surface geometry.

An example of an analysis result in EIGER Build
is shown in Fig. 3. The meshed structure is a Navy
patrol craft modeled with surface and wire elements.
The particular analysis shown is “free wire ends,”
which is used to determine if all the wires are
attached properly. This is visually shown by crosses
at the wire ends. A close up of a collection of wires
near the bow is shown in Fig. 4. Upon closer inspec-
tion, it is determined that a wire that should be
attached to the surface is not attached after all. If an
electromagnetic simulation were run with this error,
the results would not be correct, especially in the
area surrounding this collection of wires.

Future Work

During the next phase of this project, we will
incorporate volume finite elements into the EIGER
software suite. This is a necessary step to treat
geometries with a hybrid finite element/boundary
element formulation. Additionally, higher-order
interpolatory functions and elements will be
addressed to further enhance the capabilities of the
EIGER suite by increasing the accuracy and effi-
ciency for more complicated models.
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Figure 3. Screen shot
of EIGER Build. The
geometry is a Navy
patrol craft. The
crosses at the wire
ends indicate that
they are unattached.
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Figure 4. Close-up of
a collection of wires
near the bow of the
craft shown in Fig. 3.
The crosses indicate
that the wires are not
attached to the craft
surface.



trength and Reliability of Brittle Materials
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Introduction

Components fabricated from brittle materials find
wide use in numerous programs at Lawrence
Livermore National Laboratory (LLNL). Examples
include structural ceramics, windows and synchrom-
eters in particle accelerator technology, and optical
components for lasers. The use of components of
such materials in these applications requires knowl-
edge of appropriate stress levels through a wide
variety of loading scenarios.

Traditional methods of safety assessment work
less well for brittle materials because of the larger
scatter in strength values as determined by mate-
rials testing, and because the amount of data scat-
ter increases as the component increases in size.
Use of statistical fracture mechanics incorporating
Weibull parameters will allow a rational, state-of-
the-art, and probabilistic prediction of failure.
Used in conjunction with finite-element methods,
safe stress levels may be chosen based on the
required reliability.

An important part of this effort is the incorpora-
tion of the state of the art in the design and applica-
tion of advanced ceramic materials. The CARES
(Ceramic Analysis and Reliability Evaluation for
Structures) program from NASA Lewis represents a
successful effort.1 The CARES program takes a

description of the state of stress from brittle mater-
ial and derives a probability of failure based on
Weibull strength test parameters and estimates of
the effects of the biaxiality of the stress state. Our
effort incorporates the CARES type failure prediction
within constitutive models for brittle materials
within the LLNL finite-element codes.

Progress

Weibull Statistical Method for Failure
Prediction

The Weibull method for statistical failure predic-
tion is based on the concept of a distribution of
flaws both in terms of size and orientation within
the microstructure of a brittle material. Weibull
described this method as a ‘weakest link’ descrip-
tion for the size effect on failures in solids.2 Then,
following the derivation of Robinson,3 for small
volume elements where the stress can be assumed
to be uniform, the probability of failure per unit
volume is Po. The probability of survival, S, of a
volume, V, of the material is given by

S = (1 – Po)
V (1)

for the simultaneous survival of small volume elements.

FY 99 4-27

We have tested the strength and reliability of brittle materials using statistical fracture mechanics
incorporating Weibull parameters into finite-element methods. Results are given for four-point bend
bar tests on beryllium oxide.
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Taking the logarithm of each side of Eq. 1 gives

ln S = –Vln(1 – Po).

The risk of rupture is defined as R = –ln S, which
in terms of an infinitesimal element gives

dR= –ln(1 – Po)dV.

The term –ln(1 – Po) is assumed to be a positive
function depending on only the tensile stress n(σ).
Then

dR = n(σ)dV 

and

R = ∫V n(σ)dV

where R is the risk of rupture integral. From the
definition of R we get the probability of failure as

Pf = 1 – exp[–∫V n(σ)dV].

For the three parameter Weibull distribution

,

known as the general Weibull distribution function. In
this distribution the quantity ‘m’ is unitless and is
termed the shape factor or Weibull modulus. It is a
measure of the variability of the material strength
distribution. The quantity σo is the Weibull scale para-
meter and has units of stress volume(1/m). For a mater-
ial component of unit volume, σo is the expected value
of strength at the 63.2% probability level. The quantity
σu is the Weibull threshold parameter, and is the stress
value below which no failures are expected to occur.
For conservatism and mathematical convenience, the
threshold stress is normally considered to be zero, and
a simpler two-parameter Weibull model is used.

Weibull Prediction of Size Effect and
Stress Distribution

Consider two similar components of the same mate-
rial but of different volumes, V1 and V2. If the stress
state is uniform tension, the size effect in the predicted
strength for a two-parameter Weibull failure model is:3
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As an example of the size effect, consider the
case where the volume ratio of the two components
is 10, and the Weibull modulus of the material is 10,
as would be typical for the high strength ceramic.
Then the strength ratio is

.

The large component would be only 80% as
strong as the small component.

A similar effect may be shown for size effect,3

where a component in tension would be predicted to
have 73.5% of the strength of a component under
pure bending. 

These are the size and stress distribution effects
in the simplest of circumstances. When 3-D
combined stress states, and both volumetrically and
surface distributed flaws are considered, as would
be the case in most real applications, effects of size
and stress distribution take a more complex form.4

It has been shown that some brittle materials show
a definite size effect (glass cylinders under compres-
sive loads), while others do not (cement paste cylin-
ders). The appropriate use of a Weibull distribution
to model a material’s failure behavior depends on
the details of the observed failure data.

Correlation of Fracture Toughness and
Weibull Parameters

The fracture mechanics approach to failure
prediction is deterministic, with failure predictions
based on known flaw sizes and the material’s resis-
tance to crack growth, called the fracture toughness.
Based on a given flaw geometry, and the far-field
load application, the applied stress intensity factor
may be calculated at the crack tip. When the applied
stress intensity factor equals the critical stress
intensity factor, or fracture toughness, crack propa-
gation occurs.

By contrast, Weibull statistics predicts failure
based on unknown flaw distributions and far-field
stress fields. The results are predicted probabilities
of crack propagation. It is possible that there are
connections between the two methods. 

One attempt to categorize the scatter for fracture
toughness measurements5 could correlate the two
methods. Fracture is treated as a weakest link
phenomenon, while failure is treated in a probabilis-
tic fashion. The fundamental expression for the
probability of failure is given by

.
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Here V is a specified volume, and ρ is a failure
function per unit volume.

It would seem that to use the preceding equation
the function ρ must be defined, or its characteristics
must be inferred. This function must be dependent
upon stress. As noted above, Anderson5 cites earlier
work by Ritchie, Knott and Rice6 where a model was
postulated that predicted cleavage failure when the
stress ahead of a crack exceeds the failure stress of
the material (σf) over a characteristic length. Later
work by Curry and Knott7 used statistical arguments
to show that a finite volume of material must be
subjected to a stress field severe enough to fail, with
a defect large enough to initiate cleavage. 

Thus the volume stipulated in the preceding equa-
tion must be a region surrounding the crack tip. The
size of the region is defined by the severity of the
crack tip stress field and the inert strength of the
material. The inert strength of a material is defined
by ρ and because of this a specific form for ρ is
never needed. The material tested will dictate what
this function is. In a sense the material is the func-
tion. Test loads and boundary conditions serve as
input and test data serves as output from the func-
tion. However, the crack tip stress field must be
specified to derive the cumulative distribution func-
tions (cdf) for KIC (fracture toughness) and JC (criti-
cal energy release rate). Since cleavage fracture is
the assumed failure mechanism, stress fields associ-
ated with small scale yielding (SSY) must be used.

The function ρ is a function of the stress field
near a crack tip. Using the work of Hutchinson7 the
stress field can be shown to take the form

.

Anderson5 invokes the relationship between the
J-Integral and the stress intensity factor K to obtain
the expression

.

One implication of this relationship is that when a
single large flaw under tensile loading is the domi-
nant failure mode in a material, the Weibull modulus
would be measured as 4.0. Other effects such as
loading mode mixity, crack propagation effects, and
flaw interactions tend to change the value of the
Weibull modulus. Indeed, Stienstra8 has calculated
that certain crack propagation effects tend to
increase the value of the measured Weibull modulus.
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The idea that certain aspects of the microstruc-
tural failure modes may be inferred from the value of
the Weibull modulus is demonstrated to a preliminary
level of certainty. That further aspects of microstruc-
tural failure modes could be inferred from the Weibull
failure parameters through material microstructural
failure simulation and observation is of great interest
in terms of fabrication process improvement and
understanding of failure strengths in brittle materials.

Experimental Data Reduction
for Weibull Parameters

Four-point bend bar tests were conducted on spec-
imens fabricated from beryllium oxide (BeO) compo-
nents to measure the effect of specimen surface
finishing. One set of specimens had a machine ground
surface, while the second set were polished to a
mirror finish. The specimens were all nominally size A
according to the ASTM specification C-1161.9 Both
sets of specimens were fabricated and tested in
accordance with this specification, and the data
reduction followed the guidelines of ASTM C-1239.10

The size A specimens are nominally 2.0 mm wide,
1.5 mm deep, and 25 mm long. In the four-point bend
test apparatus the inner span is 10 mm, with the
outer span twice that. A good discussion of the issues
of accuracy and reliability in the testing aspects for
ceramic materials is found elsewhere.11

A third set of specimens is referred to in the
results as the BeO annealing study. Annealing
temperatures were applied to the material to see if
there could be positive results from pore closure,
crack healing, and residual stress relief due to mate-
rial flow at elevated temperatures. If there were
such effects, they are subtle, and these data points
are included for comparison purposes.

Figure 1 shows the four-point bend tests results
with failure stress in pounds per square inch as a
function of probability of failure. There was an
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Figure 1. BeO four-point bend specimen failure comparisons.
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additional surface-machined specimen which broke
in fabrication, with the remaining 30 points plot-
ted. The CARES program1 and the ‘WeibPar’
program from CRT associates12 were used for the
data reduction. The two programs agree to within
numerical error.

The BeO failure data for the polished or lapped
samples, along with the plots of the curve fit para-
meter from the WeibPar program are shown in Fig. 2.
Using the maximum likelihood estimators as the
curve fit technique, the Weibull modulus, m, is calcu-
lated to be 25.83, with the Weibull scale parameter
22,070 psi*(in3)(1/25.83). The single low data point is
an obvious ‘outlier’ from the distribution. It lies far
from the other data points and from the curve fit
parameters. When a linear regression curve fit is
used to better capture this outlying point, m is
calculated to be 10.77 while the scale parameter
is 15,770 psi*(in3)(1/25.83). 

The large change in material parameters with
the change in curve fit techniques is understand-
able, but also somewhat disturbing. It is under-
standable in that the linear regression curve fit
technique biases the curve fit to the low-level
points. It is disturbing in that it reduces the confi-
dence level that the curve fit parameters represent
real material properties.

From the curve fits, and the persistence in each
case of low stress level failures, it appears that

there is a second type or distribution of flaws which
is less prevalent but whose consequence on failure
is much more severe. The existence of this second
type of flaw distribution must be confirmed by addi-
tional tests on larger samples to bolster predictions
of its effects. This represents a real difficulty in
applying Weibull statistics to ceramic materials. It
also offers the hope that if the larger defects could
be eliminated through better material processing,
very significant improvements could be made in rais-
ing the expected design stress of BeO components. 

Fractography of the Failed BeO Specimens

Fractography of the failed samples is required to
verify the assumption that the flaws that caused fail-
ure were distributed throughout the volume of the
material, and not just present on the surface. The
Military Handbook 79013 provides useful guidelines
and information regarding the characterization of
failed ceramic surfaces.

The surface of the as-machined BeO specimen is
seen in Fig. 3 as a micrograph from a scanning elec-
tron microscope. The areas marked (a), (b), and (c)
show the features of machining striations, a machining
induced crack, and machining debris on the surface.

The as-lapped specimens show polished smooth
surfaces mixed with voids. The voids are of various
sizes and shapes as shown in Fig. 4a and their internal
structures reveal the individual grains or clusters of
grains as shown in Fig. 4b. Figure 4b is the enlarged
view of the rectangular area marked in Fig. 4a.
Evidences of unbonded boundaries between two neigh-
boring grains are shown by arrows in Fig. 4a and
unbonded three-grain junctions are shown in Fig. 4b.
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Figure 2. Weibull Chart for lapped BeO specimens.

Figure 3. Surface of the as-machined BeO samples. Areas
marked (a), (b), and (c) show features of machining mark,
machining-induced crack, and machining debris, respectively,
on the machined surface.
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From Figs. 3 and 4, the average grain size of the
present material was determined by a simple line
intercept method to about 3 µm. It is not clear
whether the microstructure shown in Fig. 4a repre-
sents the true bulk microstructure or near-surface
microstructure where the machining damage is still
visible. If the voids seen on the surface in Fig. 4a
are a part of the true bulk structure, then the mater-
ial must contain a fairly high content of voids. If the
voids are due to the machining damage and left in
place by insufficient lapping, a further lapping is
necessary to remove the machining-induced damage
and reach the true bulk microstructure. The volume
fraction of the voids in Fig. 4a is calculated to be
14% by the line intercept method. 

For purposes of the data reduction it is
assumed that the specimen critical flaws are volu-
metrically distributed.

Figure 5 shows the fracture path in the as-
lapped sample. The arrows indicate the propagation

of a secondary crack as revealed on the “tensile”
surface of the four-point bend test specimen. The
fracture path is seen to follow the grain boundaries
and connect the voids. From the micrographs of the
failure surface it seems apparent that the failure of
the ceramic material on the microstructural level is
strongly influenced by the fracture toughness of the
grain boundaries, as compared to the matrix of the
crystalline materials, and that voids play a large role
in both crack initiation and crack propagation. 

Implementation of the Weibull Failure
Predictions in NIKE2D

The implementation of the Weibull distribution for
uniaxial stress is quite straightforward for the two-
parameter failure model. For arbitrary 3-D stresses
an equivalent uniaxial stress is calculated, and the
analysis becomes complicated by additional choices.
Two methods for arriving at an equivalent uniaxial
stress, given a 3-D stress field, were examined in
depth and implemented in NIKE2D. These methods
are termed the principle of independent action, and
the Weibull averaged normal tensile stress. 

For the principle of independent action, if the
principal stresses are tensile, this approach gives a
probability of failure as

where m is the Weibull modulus and kwv is (σoV)–m. 
The Weibull normal stress method gives more

conservative estimates of the probability of failure.1

The risk of fracture at any point in the specimen is a
function of the tensile normal stress distribution, σn,

  
P fv = 1− exp −kwv v σ

1
m + σ

2
m + σ

3
m



 dV∫




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Figure 4. (a) Microstructure of the as-lapped surface. Arrows
indicate sharp crack-like unbonded boundaries between two
neighboring grains, where a fracture can be initiated. 
(b) Enlarged view of the area marked by a rectangle in Fig. 4a.
Arrows indicate where three or more grains meet and form an
unbonded junction, which can act as a fracture initiation point.

Figure 5. Fracture path in the as-lapped sample. Arrows indi-
cate the propagation of a secondary crack as revealed on the
“tensile” surface of the four-point bend test sample. The frac-
ture path is seen to follow the grain boundaries and connect
the voids.
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on all planes passing through the point.14 All the
planes passing through the point can be repre-
sented, in turn, as normal vectors of unit length,
which terminate on a sphere of unit radius in princi-
pal stress space. For an arbitrary multiaxial load on
an element of material volume, the principal
stresses acting on the element must be projected
onto those portions of the unit sphere for which the
averaged stress is tensile, under the assumption
that an average compressive stress is not harmful to
the material. 

This projected average quantity, σn, is equal to:

σn = (cosφ)2 [σ1(cosψ)2 + σ2 (sinψ)2 ] + σ3 (sinφ)2

where σ1, σ2 , and σ3 are the principal stresses, φ is
the azimuthal angle, and ψ the polar angle for the
unit sphere, as seen in Fig. 6. The equivalent uniax-
ial stress is then given by

where dA is an elemental area on the reference
sphere of unit radius.

The failure probability, PF, is then given by:

  
P fV = 1− exp − v kwpV σ

n
m∫ dV





 

σ
n
m =

Aσ
n
mdA∫

AdA∫

where dV is a differential volume in the specimen
over which the principal stresses are approximately
constant. In the preceding equation, m is the Weibull
modulus as before, and kwpV is the polyaxial Weibull
crack density coefficient. The relationship between
kwV and kwpV is found by equating the failure proba-
bility for uniaxial loading to that obtained for the
polyaxial stress state when the latter is reduced to a
uniaxial condition.1 The result is

kwpV = (2m+1) kwV.

These integral equations can be replaced with a
discrete expression suitable for implementation in a
numerical algorithm on a computer:

∫0 ∫–π/2(σn)mcosφdφdψ = ∑ ∑ (σn)mcosφ ∆φ ∆ψ

where the functions cosφ and σn are evaluated at
φ= –π/2 + (j – 1)∆φand ψ = (i – 1)∆ψ.

These expressions have been incorporated into a
version of NIKE2D. The results of these efforts are
currently being verified. 
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attice Boltzmann Modeling of Spherical Solutes 
in Confined Domains
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Introduction

Many fluid-based processes used, for example,
in the chemical and pharmaceutical industries,
involve the transport of nanometer-to-micron
sized particles in confined flow domains. To
augment the design process and to better under-
stand the fundamental behavior of particles in
such systems, one needs to be able to model and
simulate the flow field, the mechanisms for trans-
port phenomena associated with charged, polar
particles in the presence of electric fields, and
the other relevant force interactions. In the work
presented here, the LB method was chosen to
solve these complex problems.

As opposed to more traditional continuum
methods, such as Boundary Element and Finite
Element methods, the LB method is a mesoscopic
approach. Specifically, when using this approach,
one keeps track of the single-particle velocity
distribution function on a regular mesh of lattice
sites. This approach derives from the Boltzmann
transport equation, which is the conservation
equation found in the kinetic theory of gases.1

Under the appropriate flow conditions, for exam-
ple, small Mach and Knudsen number flows, the
LB method accurately captures the hydrodynamic
behavior of viscous fluids.2,3 Additionally,
because the approach is discrete, it can easily
handle bounding walls, mobile particles, external
fields, and finite Reynolds numbers. 

Another convenient feature of the LB method is
that fluid velocity disturbances are transmitted
locally from lattice site to lattice site. As a 
consequence, the fluid phase is easily paralleliz-
able relative to the conventional methods such as
finite element methods. 

Progress

The selected results presented here include
calculating the hydrodynamic force acting on an
infinite medium of equispaced stationary spheres,
a stationary sphere in a bi-periodic simulation cell
with bounding walls at the top and bottom of the
flow cell, and a single sphere translating in direct
approach toward a stationary planar surface. The
results presented were calculated using a parallel
LB code developed during FY-99. The paralleliza-
tion includes both the fluid phase and the particu-
late phase. All simulations were performed on
multiprocessor machines using MPI. Simulations
were conducted on local Dec Alpha clusters and on
an IBM SP2 machine with multiple processors.

The benchmark studies on stationary or
captured macroparticles produced interesting
results. Specifically, when passing a flow through
an infinite medium of stationary periodic spheres,
the force on the test sphere increases with increas-
ing solids fraction. Fig. 1 shows the unit cell that
gets replicated throughout space forming an infi-
nite medium of equally spaced spheres. 
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The primary aim of this effort is to develop a unique lattice Boltzmann (LB) simulation capability
to understand the dynamic behavior of macromolecules, cells, and spores in bounded flow domains.
The proposed effort for FY-99 included benchmark studies with spherical solutes to verify the utility
and accuracy of the LB method. These studies include calculating the hydrodynamic force and torque
acting on a stationary, spherical particle in bounded flows and calculation of the hydrodynamic force
acting on a mobile particle in the presence of a stationary wall. This year’s results show that the LB
accurately solves these non-trivial flow problems. Selected results for stationary and mobile
macroparticles are presented. An additional milestone that was achieved ahead of schedule is that
the 2- and 3-D LB codes with macroparticles are now parallel. 

David S. Clague
Electronics Engineering Technologies Division
Electronics Engineering
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As shown, the hydrodynamic drag force calcu-
lated using the LB method is nearly identical with
the well-accepted result of Zick and Homesy.4 Also,
it is important to note that the drag force increases
with increasing solids fraction. In contrast, when
placing the sphere in a flow channel bounded at
the top and bottom with parallel walls, the drag
force decreases as the solids fraction is increased.
Figure 2 shows a sphere of radius a bounded by
parallel walls separated by distance H. Also shown
are the upstream and downstream periodic images
of the central sphere.

The result shown in Fig. 2 shows the opposite
trend in drag force as was seen in Fig. 1. For exam-
ple, the hydrodynamic drag force decreases as the
spheres are brought closer together, or for increasing
solids fraction. As shown, it is necessary to separate
the periodic spheres by a minimum of 30 sphere radii
to ensure that the central sphere is hydrodynamically
de-coupled from its neighbors. The flow system
depicted in Fig. 2 is very much like particle capture
apparatus used in many flow systems that contain
particulates; hence, the result presented here can be

used to calculate the hydrodynamic force acting on
capture macroparticles in an actual flow cell.

Essentially, the observed difference between the
drag force shown in Figs. 1 and 2 has two explana-
tions. First, for the flow configuration in Fig. 1, the
fluid flux area between periodic spheres decreases
with increasing solids fraction which in turn
increases the drag force for a constant pressure
gradient. In contrast, the fluid flux area for the flow
configuration in Fig. 2 is constant for all solids frac-
tions; hence, there is no change in the bulk fluid
velocity with change in solids fraction. The second
reason that the drag force in Fig. 2 decreases with
increasing solids fraction is a form of “drafting.”
More specifically, the fluid velocity disturbance
caused by the upstream sphere does not recover to
the bulk fluid velocity before it encounters the next
neighboring downstream sphere. Others have
observed this same “drafting-like” phenomenon in
sedimentation problems at low Reynolds numbers. 

The final result presented here is for a sphere
translated at constant velocity in direct approach to
a stationary wall (Fig. 3).
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Hydrodynamic drag
force acting on a
periodic array of
spheres. (a) Flow
configuration. 
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drag force calculated
using the LB method
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accepted result of
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The LB results are in excellent agreement with
theory even at infinitesimal sphere-wall separa-
tions. This demonstrates that the LB approach
accurately captures hydrodynamic interactions for
mobile macroparticles.

In addition to the selected results presented
above, the LB simulation capability has also been
used successfully to study fluid behavior for flow
through conduits with irregular cross-sectional
geometry. Furthermore, simulations are in
progress to study the behavior of a single
macroparticle in Poiseuille flow in bounded
conduits. Work is also in progress to include exter-
nal fields such as gravitational and electromag-
netic fields in the parallel LB codes.

Future Work

The LB simulation capability has developed into
a useful predictive tool. The work for this coming
year will include validation of the LB method with
experimental results and inclusion of new physics
relevant to laboratory needs. The validation studies

will include the study of suspension behavior in
rectangular conduits and particle capture due to
external fields. 

In FY-00, intermolecular force will be included in
the LB simulation capability and the resulting
suspension behavior will be studied.

References

1. Landau and Lifshitz (1989), “A course of theoretical
physics, Volume 10,” Pergamon Press.

2. D. S. Clague, et al. “On the hydraulic permeability of
(un) bounded fibrous media using the lattice
Boltzmann method,” submitted to Phys. Rev. E.

3. D. S. Clague (1998), “Lattice Boltzmann simulation
of complex fluids,” Engineering Research,
Development and Technology, Lawrence Livermore
National Laboratory, Livermore, California (UCRL-
53868-98).

4. A. A. Zick and G. M. Homesy (1982), “Stokes flow
through periodic arrays of spheres,” J. Fluid Mech.
115, 13.

FY 99 4-37

a

Wall

n

x3 x2

x1

Up

 Distance, δ1a 

 
 F

o
rc

e 
(l

at
ti

ce
 u

n
it

s)

10-3

1

10

10-1

10-2

One lattice site

Theory
Lattice Boltzmann

1 2 4 5 63

(a) (b)

■
■

■

■

■
■

δ

Figure 3. (a) Sphere
of radius a at a
sphere-wall separa-
tion of δ approach-
ing the wall with
constant velocity, Up,
in an otherwise
quiescent fluid. 
(b) The LB results are
in agreement with
theory over the entire
range of sphere-wall
separations considered.





odeling of Anisotropic Inelastic Behavior
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Introduction

At a microstructural level, polycrystalline metals
are composed of aggregates of individual crystals,
each of which has its own orientation and proper-
ties. When subjected to loading, metals initially
exhibit reversible deformation, due to the stretch-
ing of the lattice. When the loads become suffi-
ciently large, permanent deformations can occur
through a number of mechanisms, such as disloca-
tion motion, twinning, or grain boundary sliding. As
a consequence of having randomly distributed
grain orientations, annealed polycrystalline metals
typically exhibit isotropic behavior with respect to
a reference configuration; that is, at a given point
in the material, the material response of a speci-
men in any direction is the same. This includes the
elastic behavior and the initial yield behavior.
However, significant processing of materials, or
even moderate plastic deformations, can cause
grains which were initially randomly oriented to
become aligned, resulting in behavior which is
anisotropic, where material response in different
directions is quite different. 

The ability of numerical simulations to predict
the behavior of systems involving materials under-
going large deformations is contingent upon having

a realistic model of the material behavior. Such
models must be accurate in the full range of possi-
ble loading conditions to which the materials may
be subjected. Use of overly simplified models in
regimes where they are not well suited can seri-
ously compromise the validity of a simulation. Many
problems of engineering interest involve metals
undergoing large deformation under multiaxial
states of stress and the need for reliable models for
these applications can hardly be overemphasized.
Experimental data demonstrate that simple models
for plasticity commonly used in numerical codes do
not accurately predict material behavior under
these conditions.

Engineering models of polycrystalline metals
generally omit microstructural details and describe
the effective macroscopic behavior in terms of a
phenomenological continuum model. Viewed from the
macroscopic perspective, the initial material
response is path-independent and there is a one-to-
one correspondence between stress and strain.
However, if the deformation or loads become suffi-
ciently large, the material begins to exhibit plastic
behavior. There is no longer a one-to-one correspon-
dence between stress and strain, the response is
dependent on the loading path taken to reach a given
state of deformation, and permanent deformation
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An experimental capability, developed at Lawrence Livermore National Laboratory (LLNL), is
being used to study the yield behavior of elastic-plastic materials. The objective of our research is to
develop better constitutive equations for polycrystalline metals. We are experimentally determining
the multidimensional yield surface of the material, both in its initial state and as it evolves during
large inelastic deformations. These experiments provide a more complete picture of material behavior
than can be obtained from traditional uniaxial tests. Experimental results show that actual material
response can differ significantly from that predicted by simple idealized models. These results are
being used to develop improved constitutive models of anisotropic plasticity for use in continuum
computer codes. 

Daniel J. Nikkel, Jr. and Deepak S. Nath
New Technologies Engineering Division
Mechanical Engineering

Arthur A. Brown and James Casey
University of California at Berkeley
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remains after external loads are removed. This gives
rise to the theoretical idealization of an elastic-
plastic material, and in particular, to the notion of a
yield function1 denoted by

. (1)

Here, skl denotes the components of the stress tensor;
ekl denotes the components of the strain tensor;
denotes the components of the plastic strain tensor;
κ is a scalar measure of work hardening; and the
ellipses represent other inelastic state variables
which may be present, depending on the complexity
of the chosen constitutive theory. 

The yield function is a key ingredient of the
constitutive theory of elastic-plastic materials. The
condition f = 0 (or g = 0) describes the boundary
between stresses (or strains) that result in only
elastic behavior, and those which result in inelastic
behavior. For fixed values of the inelastic variables,
the yield condition can be interpreted geometrically
from the point of view of stress space (or strain
space), as a surface which bounds the region in
which only elastic behavior occurs (the elastic
region). When the loading path intersects the yield
surface and tries to cross it, inelastic behavior
occurs and plastic deformation results. The current
state never moves outside the yield surface, but
instead the surface is carried along with it. Typically,
the yield surface changes both in shape and size as
the inelastic deformation increases. Measured yield
surfaces for three of the states along the complex
stress path depicted in Fig. 1a are shown in Fig. 1b. 

In addition to the yield function, the constitutive
theory includes evolution equations for the inelastic
variables during loading (g = 0, ĝ > 0). Thus, for the
plastic strain, we have

,  . (2)

Here ρkl is a constitutive response function that
is independent of the rates of stress or strain. For a
broad class of materials, under a physically reason-
able assumption regarding work in closed cycles in
strain space, ρkl can be replaced with the product of
a scalar function and the normal to the yield surface
in stress space, thus requiring the specification of
only one additional scalar response function.1 For
special classes of materials, this scalar function is
determined from the yield function and hardening
and does not require an independent specification.

Most plasticity models implemented into numeri-
cal codes for metals use a yield criterion which
corresponds to a fixed shape of the yield surface (for
example, elliptical in the case of the Mises yield
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criterion). What distinguishes different models is
how the yield surface evolves (for example, it may
translate rigidly, or alternatively change its size
while maintaining its shape, or follow some combi-
nation of these simple hardening laws). Many simu-
lations are run with a model that assumes an ellip-
tic yield surface of fixed aspect ratio that only
changes in size due to hardening. While the initial
yield surface of isotropic materials may be repre-
sented reasonably well by an ellipse, subsequent to
even moderate plastic deformation, the shape of the
yield surface in real materials can change signifi-
cantly (Fig. 1b). For this reason, simple representa-
tions of the yield function will be satisfactory only
under very restrictive loading conditions (such as
monotonic or uniaxial), and are inadequate for
general multiaxial loading conditions, especially
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Figure 1. (a) Imposed sequence of loading states for yield
surface measurement on a single specimen, identified as “D”
in Table 1. (b) Measured points on yield surfaces in 2-D stress
space from a single 1100 aluminum specimen subjected to the
loading states in Fig. 1a. For clarity, only the surfaces
measured at load states 0, 1, and 2 in Fig. 1a have been
shown. The subsequent yield surfaces show significant devia-
tion from an idealized ellipse even though the strains involved
are moderately small.
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when loads can reverse and change direction during
the history of loading.

In view of these considerations, and motivated by
the fact that the vast majority of available experi-
mental data on polycrystalline metals are for uniax-
ial (and generally monotonic) loading, our group
developed an experimental capability to map out the
yield surface at various fixed states of large inelastic
deformation under multiaxial loading. By determin-
ing the yield surfaces on a single specimen at multi-
ple fixed states, the evolution of the yield surface
during plastic deformation can be observed. These
data provide the basis for developing improved
constitutive equations for phenomenological
descriptions of polycrystalline metals.

Progress

This project is a combination of a program of
novel experiments characterizing inelastic material
behavior together with an effort to develop better
material models for implementation into numerical
analysis codes. The primary approach has been to
obtain improved experimental data for the macro-
scopic response as a guide to the development of
better phenomenological models. During FY-99, we
have further refined the experimental procedures
developed in previous years, and have obtained
some important new data. 

In addition to this direct macroscopic approach,
we have begun to examine the alternative strategy of
incorporating information from lower length scales
where explicit consideration is taken of material
microstructure, and we have also begun to explore
how this mesoscale description can be homogenized
to obtain improved macroscopic models. 

Further, work on general issues related to numer-
ical implementation of anisotropic plasticity models
has been pursued, in the context of both purely
Lagrangian and arbitrary Lagrangian-Eulerian
(ALE) formulations.

Experiments

The experimental portion of this project involves
determination of the yield surface under multiaxial
states of loading, using thin-walled tension-torsion
specimens with a 2-in. inside diameter. The experi-
mental determination of the yield surface of the
material is carried out by loading a specimen under
multiaxial conditions and probing until the point of
yield is reached, then backing off and probing in a
different direction in stress space (and in strain
space) until the next yield point is found. This
process is repeated until the entire surface is

mapped out. The sensitive nature of the measure-
ments being made requires careful attention to the
issues of specimen design and preparation, experi-
mental methodology, and interpretation of the data.
The general description of the experiments and the
difficulty in carrying out these measurements have
been discussed previously,2,3 and this year a
comprehensive description of the experimental
procedure has been compiled.4

Ideally, a measured yield surface represents the
boundary between elastic and inelastic behavior at
a given elastic-plastic state. As a practical matter,
the identification of the yield point requires loading
somewhat beyond the elastic region so that the
inelastic behavior becomes evident. The procedure
which has been developed can detect yield without
producing a plastic strain much greater than
5 × 10–6 (5 µ-strain), and yield surfaces can be
obtained for multiple elastic-plastic states from a
single specimen. It is clear from the data that the
yield surfaces determined from multiaxial loading
tests are strongly dependent on the method used to
identify the yield point. Many different definitions of
the yield point are possible; these vary in both
experimental complexity and in the amount of plas-
tic deformation that is induced during the determi-
nation of yield at a given point. The measured yield
surfaces can vary from appearing roughly isotropic
when a coarse large off-set or back-extrapolation
method is used, to clearly exhibiting material
anisotropy when a small off-set definition of yield is
used (Fig. 1b). The definition of yield point is
related to the idealized way in which the theoretical
model represents real material behavior. These
issues are discussed more fully elsewhere.4 After
investigating various alternatives, we adopted a
5 µ-strain offset definition of yield as the most
meaningful for our current interests.

In addition to generating data from the measure-
ment of yield surfaces, we are also exploring the
fundamental question as to the proper definition of
plastic strain in the context of large inelastic defor-
mations.5,6 When yield surfaces have moved so that
they no longer enclose the origin in stress space (for
example, yield surfaces D1 and D2 in Fig. 1b), the
material cannot be unloaded to zero stress without
causing new plastic deformations. 

The traditional way of defining plastic strain is to
identify it with the residual strain remaining when the
load is removed. This definition arose intuitively from
consideration of uniaxial tests with small deforma-
tion, but it is clearly inadequate in the situation of
more general states of loading where the yield
surface no longer encloses the origin in stress space.
Plastic strain is not among the set of kinematic 
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variables that come from classical continuum
mechanics. Since it is a primitive variable in the
constitutive theory, one must be able to identify it
unambiguously for the theory to be meaningfully
predictive and not simply a sophisticated curve-fit.

Previously, an experimental methodology was
proposed for verifying the validity of our prescrip-
tion for identifying plastic strain, in cases where
the origin lies outside the stress space yield
surface. It is defined as the point in strain space
corresponding to the point on the yield surface in
stress space closest to the origin.5,6 This method
exploited the property from Eq. 2 that the direction
of the increment in plastic strain is independent of
the size and direction of an applied increment in
stress or strain. By comparing the directions of the
plastic strain increment for two different loading
directions originating from the same state, the
prescription can be verified. The high precision
necessary to be able to make the measurements
required for this verification was a driving force
governing the refinement of experimental proce-
dures. Three different verifications (requiring the
determination of six distinct yield surfaces) have
been completed which do in fact validate this
prescription for identifying plastic strain. 

Characterization of Experimental Results

One consistent observation in the experimental
data with a 5 µ-strain off-set definition of yield
(such as in Fig. 1b) is a distortion of the shape of
the yield surface after moderate plastic deformation
when loading away from the origin. The initial yield
surface is close to elliptical in shape. For subse-
quent yield surfaces, the side away from the loading
point (and closest to the origin) tends to flatten,
while it tends to elongate near the loading point,
resulting in a D-shaped surface. There are classical
closed curves, such as the folium, the piriform, and
the pear-shaped quadric, that are somewhat
D-shaped.7 However, after some effort it was found
not possible to use these functions to represent the
data in a robust manner. An alternative approach to
using a single analytical function to represent the
yield surface in two dimensions is to approximate it
with a collection of smooth intersecting segments.
As a curve-fitting scheme this approach is capable
of matching a given set of data with any desired
degree of accuracy, but such a representation
provides little physical insight towards the develop-
ment of improved models. Moreover, describing
yield surface evolution in a general way becomes
problematic, and it also presents difficulties in
terms of numerical implementation. 

To characterize the data, and to give some direc-
tion to the development of improved models, “best
fits” to the data were performed with polynomial
functions representing closed curves. Even for
quadratic polynomials this is a nontrivial exercise.
In the usual routine task of fitting a function to
discrete x-y data, an error function is defined and
the unknown coefficients are determined by mini-
mizing the error. The resulting system of equations
is linear and a unique solution is guaranteed. 

For the problem at hand, however, the data pairs
(xi, yi) cannot be approximated by an explicit function
of the form y = f(x); rather they must be represented
by implicit functions of the form f(x,y) = 0. To fit an
implicit function to the data, an error function is
defined as usual, but the system of equations that
must be solved to determine the unknown coeffi-
cients is highly nonlinear and there is no guarantee
of uniqueness as in the linear case. Solving the
system of nonlinear equations numerically is a
complex undertaking requiring sophisticated solu-
tion techniques. 

Quadratic fits to all the data sets were obtained by
using a package for orthogonal distance regression,
ODRPACK, which is publicly available from NIST8

(Fig. 2). The program finds the parameters that mini-
mize the sum of the squared weighted orthogonal
distances from a set of observations to the curve or
surface determined by the parameters. This proce-
dure provided a method of characterizing the data in
terms of change in position, size, and orientation of
subsequent yield surfaces. Results of the data reduc-
tion for various measured yield surfaces are shown in
Table 1. A second-order polynomial is sufficient for
gauging the size, location, and some sense of the
“orientation” of the yield surface, but it cannot
adequately represent features such as relative elonga-
tion and flattening of the yield surface. Higher order
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Figure 2. Second-order polynomial fits to yield surface data.
Quadratic functions can capture the trends in size, location
and some sense of orientation, but provide no characteriza-
tion of the distortion into the observed D-shapes.
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function fits could likely provide better representa-
tions of the D-shaped data curves, but ODRPACK was
unable to give reliable fits in a unique, robust manner.

Numerical Modeling

The Mises yield condition, which is a quadratic
polynomial in the deviatoric stress components, is
known to agree well with experimental data on
annealed (isotropic) polycrystalline metals, and it
also has a physically appealing interpretation in
terms of distortion energy. For anisotropic materi-
als, the most general quadratic yield function repre-
senting a smooth initial yield surface which reduces
to the Mises yield function in the special case of
isotropic materials is of the form9

, (3)

where due to symmetries the coefficients Bklmn,
have 21 independent components. If, as is
commonly done, the further assumption is made
that the yield behavior is independent of the mean
stress (pressure), then the stress tensor in Eq. 3
can be replaced by its deviatoric part and the coef-
ficient tensor can be replaced by a reduced tensor
which has 15 independent coefficients. As
mentioned previously, a quadratic representation of
the yield surface can reasonably capture its loca-
tion, size, and a sense of the orientation observed
in real materials, but it does not capture the distor-
tion of the yield surface from elliptical to D-shaped.
Nevertheless, Eq. 3 is much more general than the
Mises yield function, and it contains as special

f B s sklmn kl mn= −κ 2

cases other anisotropic yield models which have
been implemented into LLNL codes.

An anisotropic plasticity model with the yield
function in Eq. 3 was implemented into the paral-
lel version of the code ALE3D. Figure 3 shows a
Lagrangian numerical simulation of a Taylor
impact test using an anisotropic tantalum cylindri-
cal projectile. The predicted ovaling of the impact
footprint is in agreement with experimental data.10

Since a basic feature of anisotropic behavior is
that the response depends on the material direc-
tion, it is necessary to track material directions
during deformation. While this is a straightforward
issue within a Lagrangian formulation, implemen-
tation of anisotropic plasticity models in the
context of an ALE formulation is complicated by
the fact that nodes of a mesh are not material
points, and the element edges are not material
curves. An alternative approach must be used to
keep track of material directions. Material direc-
tion vectors mi can be stored as element-based
variables, and can then be updated during the
Lagrangian step according to

, (4)

where Lij are the components of the velocity gradi-
ent tensor. These element-based quantities can
then be updated as other history variables during
the advection step. There are increased memory
storage costs associated with modeling anisotropic
plasticity. Along with storing the material direction
vectors and any additional constitutive variables,
properly invariant formulations of anisotropic

˙ ( ( ) )m L L m m mi ij kl k l ij j= − δ
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Table 1. Characteristics of yield surface data obtained from quadratic fits. The yield surface designation comes from a specimen 
identification letter and a state number.

Offset e11
p  e12

p  Orientation Subaxis Subaxis
Yield Def. (µ- (µ- (µ- Center angle 1 2 Aspect
surface strain strain) strain) (psi) (°) (psi) (psi) ratio

A1 15 300 0 (857, −57) 29.8 1250 1460 0.86
A2 15 8690 7128 (871, 947) −16.3 3000 1380 2.17
B0 1 0 0 (−87, 94) 3.91 1770 1060 1.67
B1 1 1 −17 (−11, −263) 2.23 1840 890 2.07
B2 1 92 −2055 (37, −1809) −1.12 1550 370 4.19
C1 1 −4578 102 (−3425, 114) 24.7 770 1170 0.66
C2 1 −5008 234 (−3713, 82.4) 40.4 640 1050 0.61
D1 5 5 −2020 (−209, −1698) −7.2 2230 650 3.43
D2 5 30 −2100 (80, −1698) −0.9 2330 750 3.11
D4 5 30 −2010 (84, −1230) −3.3 2610 770 3.39
D10 5 1030 −3660 (1250, −1918) 14.0 2380 670 3.55
D12 5 990 −3560 (1145, −1459) 26.0 2570 1070 2.40
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models also require storing additional kinematical
quantities such as the rotation and stretch tensors.

Alternative Approaches 
Using Mesoscale Homogenization

The approach described earlier seeks to develop
a macroscopic phenomenological model directly
from measurements of the macroscopic inelastic
behavior. An alternative strategy is to examine the
governing processes in terms of microphysical
behavior at lower length scales, and then to deduce
a model for the effective macroscopic behavior
through an appropriate averaging, or homogeniza-
tion, procedure.

Working toward a theoretical approach to homog-
enization, using a variational principle, and in the
context of strain gradient crystal plasticity, we
developed a new upper bound for the effective yield
surface of a polycrystal.11 This procedure uses one-
and two-point correlation functions of the orienta-
tion distribution. This bound demonstrates a grain
size effect via its dependence on the polycrystal’s
spatial and orientation distribution statistics. It can
be shown that this bound almost always improves
upon the Taylor model bound.

It is also possible to approach the homogenization
from the point of view of numerical simulations using
a so-called virtual test sample. A representative
volume element of material can be modeled in which
individual grains are explicitly resolved, and repre-
sented by a single-crystal plasticity model. Such a

numerical test sample can be used to simulate the
macroscopic behavior under a wide variety of loading
conditions, guiding the development of a macro-
scopic phenomenological model. In preparation for
this approach, detailed orientation imaging micro-
scope (OIM) scans have been made at regular
depths through a carefully prepared tantalum speci-
men, mapping out the orientation of individual
grains (Fig. 4). From this detailed database a 3-D
numerical model can be generated which accurately
represents the real microstructure of the material.
This numerical model can then be subjected to a
variety of loading conditions, and the effective
macroscopic behavior predicted. The yield surface
data that has been generated can be used as a vali-
dation check for both theoretical and numerical
homogenization methodologies.

Future Work

This project has produced an experimental capa-
bility that provides multiaxial data, which can be
used to develop and validate advanced constitutive
models. We have also established a solid framework
from which to pursue numerical developments of
anisotropic plasticity. From this foundation, further
developments will continue, focusing on the develop-
ment of improved material models for ASCI codes.
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Figure 3. Numerical simulation of a Taylor impact test of an
anisotropic tantalum circular cylinder exhibiting ovaling of the
impact footprint. For isotropic material properties, the cylinder
would expand axisymmetrically at the impacting end. The
calculation agrees with experimental results.

270 µm = 60 steps

Figure 4. Orientation Imaging Microscope scan of one plane of
a well-characterized tantalum polycrystal. The shading indi-
cates particular crystal orientation. Similar scans, at a
sampling resolution of 4.5 µm, have been made at 47 planes
through the sample. From these data a 3-D numerical model
can be constructed representing the microstructure.
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evelopment of Laser-Driven Photocathode Injector
and Femtosecond-Scale Laser Electron
Synchronization for Next Generation Light Sources

Center for Computational Engineering

Introduction

Short pulse x-rays enable time-resolved charac-
terization of shock dynamics, and examination of
materials under extremes of pressure and tempera-
ture. Examples include equation-of-state charac-
terization on high-density materials, crystal disor-
ganization and re-growth in shocked and heated
materials, and measurement of short time scale
phase transition phenomena. Single shot evalua-
tion, requiring high peak flux, is important for
complex experiments such as probing of laser-
shocked actinides. 

Our photoinjector project enables the develop-
ment of a high brightness, femtosecond-scale,
tunable, hard x-ray probe for time-resolved material
measurements. 

The x-ray pulse intensity will be five orders of
magnitude higher than previous demonstration
experiments, extending the range of applicability
beyond repetitive solid-state applications. Success
of this project will place LLNL at the forefront of
ultrafast x-ray dynamics and establish a world class
electron beam dynamics research program.

The key goals of the photoinjector include devel-
opment of a photoinjector integrated with the LLNL
RF linac, and implementation of techniques to
synchronize the photoinjector with an RF linac and
the high power FALCON laser system. New tech-
niques have been proposed to meet the synchroniza-
tion requirements of the system in its final configu-
ration.1 Characterization of the beam parameters
and optimization of the laser-electron interaction
will be accomplished using new diagnostic tech-
niques developed at LLNL.2,3
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A high brightness photoinjector has been developed at Lawrence Livermore National Laboratory
(LLNL). This injector, combined with the 100-TW FALCON laser, and the existing LLNL 100-MeV
S-Band RF linac will enable development of a high brightness, femtosecond-scale, tunable, hard x-ray
probe for time-resolved material measurements. A low emittance electron beam synchronized with
femtosecond accuracy to an intense laser will revolutionize x-ray dynamics studies of materials. This
project will lead development of ultrafast x-ray dynamics research on problems important in physics,
chemistry, biology, and materials science. Precise diagnostics for measurement of relativistic electron
beams have also been developed.
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Defense Sciences Engineering Division
Electronics Engineering
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Laser Programs
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Progress

Despite the highly ambitious goals and sched-
ule, all milestones have so far been met or
exceeded. A summary of first year accomplish-
ments follows: (1) high-power RF system commis-
sioned with 18 MW delivered to the photoinjector
lab; (2) photoinjector cavity designed, cold tested,
brazed, and installed with all specifications met or
exceeded; (3) LLNL innovations, including HIP
copper, diamond-turned cathode, and improved
vacuum; (4) photoinjector test beamline designed
and implemented, complete with optics and diag-
nostics; (5) UV laser system nearing completion;
and (6) RF linac synchronized with the FALCON
laser system.

Future Work

The first goals for FY-00 include synchronization
of the photoinjector and FALCON laser, and contin-
uing detailed characterization of the photoinjector
beam. The low energy (4 to 5 MeV) electron beam
and the FALCON laser will be used in the early part
of FY-00 for Thomson scattering using the photoin-
jector independent of the RF linac. Photoinjector
integration with the linac will follow these initial
experiments. Additional experiments relating
directly to high gradient accelerator science and
technology, as well as advanced diagnostics will be
performed with time permitting, and should lead to
important publications.

The final product of this proposal enables an
operational short pulse x-ray test-bed.
Development of the photoinjector and integration
with the linac also leads to a world class electron
beam research program. The project will evolve
into an ongoing program on shocked materials. 
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Segment-to-Segment Sliding Interface 
Algorithm for DYNA3D

Center for Computational Engineering

Introduction

There are several sliding interface options avail-
able in the explicit finite-element code DYNA3D.1

They are designed to address different contact/impact
scenarios and are based on the detection of interfer-
ence between a node and a segment. A segment in
sliding interface terms usually means a shell/plate
element or a facet of a volume element. Even for the
contact options with both sides of the sliding inter-
face defined by segment lists, DYNA3D internally
sorts out the nodes associated with one segment list
and checks against the other segment list. The node-
to-segment approach hinges on the detection of the
interference between a node trajectory within a
certain period of time, usually a time step, and a
given segment. The trajectory of a node within a inte-
gration time step can be properly represented by its
velocity vector. This method has been the backbone
of the DYNA3D sliding interfaces and has performed
very well over time, but it fails to detect the interfer-
ence for certain cases. 

One of these cases is the so-called edge-to-edge
contact that is depicted in Fig. 1 in an extreme way.
The arrow in the figure indicates the motion of one
shell element; the other is stationary. The two shell
elements clearly interpenetrated each other, but will
not be detected because the trajectories of the
nodes associated with one element never interfere
with the other element.

Experienced finite-element analysts have used
modeling techniques to overcome this shortcoming
in simulating edge-to-edge contact. One of the meth-
ods used is to add rigid shell elements perpendicu-
lar to the shell structure edges to aid the contact

detection. However, modeling techniques of this
nature require knowing the penetrating entities a
priori and often lead to falsely identified interference. 

For analyses involving unpredictable structural
damage, such as the damage assessment of bomb-
blasted buildings or the integrity assessment of
underground structures, these modeling techniques
appear impractical since the disintegration of
structures is unknown to the analyst until the event
takes place.

The failure of the nodes-to-segments sliding inter-
face algorithms can be attributed to the loss of sight
of segment connectivity on the side that is repre-
sented by a simple list of nodes. To remedy this
problem, a segment-to-segment algorithm, which
considers the nodal connectivity of both interfering
entities, is a logical alternative. Because of the
complicated mathematical representation for a poly-
gon in 3-D space, a definitive identification of
segment interference can be costly. To make meth-
ods of this class feasible in a production finite-
element code like DYNA3D, robust and effective
procedures in checking the interference must be
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This report describes an interface algorithm focusing on the detection of interference among
segments, instead of the traditional approach of nodes against segments. It is designed to treat the
edge-to-edge contact between structures, but versatile enough to handle general contact/impact
problems. This algorithm can be implemented to complement the existing sliding interface algorithms
in DYNA3D or as a stand-alone sliding interface option.

Jerry I. Lin
Defense Technologies Engineering Division
Mechanical Engineering

Figure 1. Segment edge-to-edge contact.
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made available. A proposed detection algorithm that
does not require solving nonlinear equations is
outlined in the following section. With the help of the
existing sorting2 and preliminary screening3 tech-
niques, this segment-to-segment detection method
represents a robust and complementary alternative
to the node-to-segment approaches. Once the inter-
ference between a pair of segments is identified, it
can be resolved by applying the separation forces to
either the segment or the individual nodes. 

Progress

The Segment-to-Segment Detection
Procedure

Because of the significant cost associated with
the contact detection calculation, all sliding inter-
face algorithms, including node-to-segment and
segment-to-segment, prefer to deal with as few
interfering candidates as possible. Two preliminary
screening techniques, namely the bucket sort2 and
the pinball search,3 are frequently used in reducing
the candidate list. Both of these methods are imple-
mented in the existing DYNA3D sliding interface
options and over the years have proven to be highly
effective. They will again be used in the proposed
detection scheme to sort out the possible interfering
pairs. The segment-to-segment detection procedure
is described in its execution sequence as follows:

1. The Bucket Sort. An imaginary rectangular
parallelepiped large enough to cover the entire
contact domain is imposed on the sliding inter-
face. This box is then broken into contiguous
cubes, originally called cells3 but more
commonly referred to as buckets. The size of
these buckets is determined by the code. All
relevant segments are sorted into these buck-
ets according to the locations of their
centroids. When detecting the interference for
a specific segment, only segments located in
the same or adjacent buckets will be checked
against it in the subsequent steps.

2. The Pinball Search. A sphere, hence the name
pinball, is assigned to each segment on the
sliding interface. The pinball is centered at the
centroid of the segment and is large enough to
enclose its associated segment. A preliminary
screening of identifying overlapping pinballs is
conducted next. Only pairs of segments with
overlapping pinballs will be further examined
in the subsequent steps.

3. The Segment Interference Check. Segments A
and B in Fig. 2, defined by nodes 1-2-3-4 and
5-6-7-8 respectively, represent a generic pair
being checked for possible interference. nA
and nB are their unit normal vectors, and xA
and xB are the locations of their centroids.
(Bold face characters denote vector quantities
in the rest of our discussion.) Side 5-6 of
segment B is first checked against segment A.
Let us denote the plane passing through xA
and having nA as its unit normal vector plane
A. The following parametric equation of p
represents the point at which the ray 5-6
intersects plane A.

[x5+p(x6–x5)–xA] • nA=0 (1)

Solving for p yields 

(2)

If 0≤p≤1, which means nodes 5 and 6 are on
opposite sides of plane A, the intersection
point P can be expressed as

xp=x5+p(x6–x5) (3)

Otherwise side 5-6 of segment B does not
intersect segment A, and no further action is
needed for side 5-6. For the case 0≤p≤1, we
must determine whether xP falls within
segment A. If

(xP–x3)•[(x2–x3)×nA]≥0, (4)

xP is on the same side of line 2-3 as the
segment centroid xA. If the inequality (Eq. 4)
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Figure 2. A pair of segments under interference check.
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holds true, the same check must be applied to
the remaining three sides of segment A. If any of
the four sides of segment A do not satisfy Eq. 4,
side 5-6 of segment B does not intersect
segment A, and we should proceed to check the
remaining sides of segment B. Only if xP is on
the same side as segment centroid xA for all
four sides of segment A, can the interference be
declared. Once interference with segment A is
identified for any one side of segment B, the
unchecked side(s) of segment B can be skipped. 

4. The Centroid Position Check. One scenario of
interference, as shown in Fig. 3, can still go
undetected by the procedures outlined in step
3. In this case, the two segments under
consideration are perfectly parallel and the
subsequent motion does not change this situa-
tion. Even when the two segments pass
through each other, the sides of a segment do
not intersect its counterpart. However this
situation can be quickly identified by

(xB–xA)•nA≤0, (5)

which indicates xB, the centroid of segment B,
has dipped under segment A.

Interference Resolution

After the interference between two segments is
detected, a set of forces must be applied to resolve
the interference. These forces can be decided either
by examining the relative position and motion
between individual nodes and the opposing segment
or by examining the relative position and motion of
two segment centroids. 

The former is essentially going back to a localized
node-to-segment approach. It allows forces of differ-
ent magnitudes and directions to be imposed on
individual nodes according to their respective posi-
tion and motion. Its shortcomings are higher cost,

increased possibility of erroneous nodal motion, and
the need for double-path processing to maintain
possible symmetry. 

The latter approach treats the segments as
collective entities and calculates the separation
forces as functions of relative position and motion.
Nodes are not examined individually, and forces are
applied uniformly to the nodes of a segment. This
approach may not be adequate for cases requiring
accurate node repositioning. However it will be more
cost-effective, stable, and inherently maintains
possible symmetry. 

Future Work

It is very difficult, if not impossible, to design a
sliding interface algorithm that covers all contact
conditions. The proposed detection scheme comple-
ments the existing sliding interface options in
DYNA3D and makes analyzing problems with arbi-
trary structure disintegration feasible. This new
algorithm does not incur great expense since no
iterations or solving systems of equations is
required. There should be little doubt that extreme
scenarios can be drawn up to foil the algorithm, but
it should be able to simulate most of the contact
situations in our application. 

Further studies and experiments are needed for
the separation force calculation. This is especially
true if a node-to-segment approach is to be adopted
and individual node trajectories do not intersect the
opposing segment. Past research in this area3

should provide a good guideline for future work. 
The implementation of this algorithm into

DYNA3D is to be carried out in the next fiscal year,
and the new feature should be ready by the latter
half of 2000.
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Introduction

Last year we extended our prototype version of
the TIGER code to model realistic accelerator kicker
structures being built for the Experimental Test
Accelerator (ETA-II) at Lawrence Livermore National
Laboratory (LLNL). We also added high-order wake
field capabilities for the kicker structures and
explored time-domain thin-wire algorithms.

This year we began by modeling a septum to
better understand the wake fields caused by having
the high-current electron beam pass by this struc-
ture. The modeling of the septum, shown in Fig. 1,
presented many new challenges. Although the
septum has many similarities with kicker structures,
there are also significant physics differences. 

This is the last year we will build on the prototype
version of TIGER. The prototype version allowed us
to test many of our object-oriented abstractions in
TIGER while solving some near-term problems of
interest to LLNL’s accelerator programs. It is our
intent to move the prototype version’s capabilities
into a more production level code. The work
involved in building a production level, time-domain,
full-wave physics electromagnetics code for struc-
tured/unstructured, serial/parallel situations
involves two main efforts. 

The first effort is the management of the
complexity and the bookkeeping involved in hybrid

meshes, massively parallel environments, and multi-
ple algorithms with disparate overheads. The second
effort is the research into the generalization of algo-
rithms so they work in hybrid situations. Both of
these efforts are non-trivial. It is our hope that the
object-oriented framework that we have been build-
ing will insulate the programmer from the complexi-
ties of hybridization involved in the first task. At the
same time, we hope the platform provides a
programming environment that facilitates quick test-
ing and implementation of the new physics that must
be developed for the hybridizations/generalizations
of the second task. 

The object-oriented framework is several months
behind schedule, but is proceeding rapidly. A first
beta version of a series of three libraries, which
represent the core of TIGER’s object-oriented book-
keeping abstractions, is intended to be finished in
early 2000. Earlier versions of TIGER have, to vary-
ing degrees, tested major portions of the abstrac-
tions. The latest version ties everything together. 

Progress

This year’s efforts were directed at TIGER usabil-
ity enhancements and the modeling of a septum
structure. Specifically, we built a simple Graphical
User Interface (GUI) and mesh generator, developed
and implemented a general field sensor capability
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for unstructured finite volume meshes, developed
and implemented a current sourcing procedure for
unstructured grids, and ran several septum applica-
tions requiring these features. 

These usability enhancements were required to
help transition TIGER’s research technologies into a
more production level environment. The develop-
ment of sourcing and sensing capabilities for
unstructured meshes, described in this report, were
unresolved research topics that needed to be
addressed to increase TIGER’s overall applicability.

Meshing and GUI

The GUI we built is at present very limited, but
does allow us to query the mesh about detailed
topological questions. The mesh generator is
simplistic and was built solely to circumvent difficul-
ties encountered using the I-DEAS mesh generation
package. Our mesh generator builds an all-hexahedral
mapped mesh. 

Although the mesh generator is very crude and
not user friendly, it allows us to build septum
geometries in a few hours to a few days depending
on the complexity of the geometry. We were still not
quite finished building the septum shown in Fig. 1
after spending roughly two months of effort using
the I-DEAS software package. The knife edge seam
where the waveguide section splits into two rectan-
gular pipes, as well as the curved depression areas
in the waveguide, caused considerable difficulties in
I-DEAS. Figure 2 shows part of the outer surface
mesh of the septum built with our mesh generator
and displayed using the GUI. 

3-D Vector Field Interpolation

The finite-difference time-domain (FDTD) algo-
rithm is a simple but elegant algorithm  for modeling
Maxwell’s equations. The algorithm has matured
since its inception at LLNL in 1966. FDTD is a very
powerful computational method and is still by far the
most popular method used today. FDTD does have a
severe limitation in that the modeled geometry must
be built out of rectangularly shaped brick elements.

Finite-volume time-domain (FVTD) techniques
such as the discrete surface integral (DSI)1 method
remove this limitation by allowing the mesh to
conform to the geometry. However, FVTD techniques
are much newer, more complex, more research-
oriented, and are less mature, with only dozens of
papers published to date as compared to thousands
for FDTD. 

One open research area for FVTD techniques is
the implementation of sources and sensors when the
mesh is non-orthogonal. In a FDTD method, the
mesh is always orthogonal and so each of the vector
field components is de-coupled from the others. 

This allows one to interpolate/extrapolate various
field components independently.

In a finite-element method (FEM), basis functions
are used which uniquely determine the fields at any
point within the element. In a FVTD method
however, the vector field components are coupled
when the mesh is non-orthogonal, and in general, no
basis function has been assumed to determine fields
at an arbitrary point. 

When modeling accelerator components it is often
desirable to compute wake potentials by integrating
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fields over an arbitrary cylindrical surface that does
not conform to the mesh. 

Usually this surface is determined by the physics,
and cannot conform to the mesh. Since the edges in
the unstructured mesh do not conform to the cylin-
drical surface, and in general are not aligned with
the coordinate axes, the fields must be interpolated
to the required points. Linear interpolation was used
on the vector fields in three dimensions. The vector
interpolation function for point (x, y, z) is

F(x, y, z) = Fx(x,y,z)x + Fy(x,y,z)y + Fz(x,y,z)z

with

Fx(x,y,z) = C1 + C2x’ + C3y’ + C4z’ +
C5x’y’ + C6x’z’ + C7y’z’ + C8x’y’z’ (1)

Fy(x,y,z) = C9 + C10x’ + C11y’ + C12z’ +
C13x’y’ + C14x’z’ + C15y’z’ + C16x’y’z’ (2)

Fz(x,y,z) = C17 + C18x’ + C19y’ + C20z’ +
C21x’y’ + C22x’z’ + C23y’z’ + C24x’y’z’ (3)

and x’ = x - x0, y’ = y - y0, z’ = z - z0 for a reference
point (x0, y0, z0). To determine the constants Cj a set
of 24 edges is chosen in the vicinity of (x0, y0, z0)
and the dot products of F(x,y,z) with the edge direc-
tions are matched to the edge fields from the DSI
solution. If dix, diy and diz are the direction cosines
of edge i, and Ei is the edge field at (xi, yi, zi), the

set of 24 equations is

Ei = F(xi, yi, zi)•dI = (4)

for i = 1,…24. This set of equations is solved for the
coefficients Cj to determine the interpolation func-
tion. If  are the elements of the inverse of the matrix
of coefficients of the Cj in Eq. 4, then

for i = 1, 24. 
In evaluating the wake potentials we interpolated

the fields to points with spacing on the order of the
mesh cell dimensions and approximated the integrals
as sums of pulses. In this case, each interpolation
function and corresponding set of edges is used for
only one evaluation point. By choosing the reference
point at the evaluation point x’, y’ and z’ become zero,
and the interpolation function simplifies to
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Figure 2. Mesh devel-
oped for the septum
model.
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Thus only 3 × 24 coefficients must be stored for
each point for use with the Ej from each time step.

The choice of edges for fitting the interpolation
function was found to require care, since a bad
choice could result in a singular or ill-conditioned
matrix. For each interpolation point all edges within
a radius of several times the maximum cell dimen-
sion were selected. These were separated into edges
predominately in the x, y, and z directions and
sorted by distance from the interpolation point. Then
for each vector direction the nearest edges were
chosen, to obtain eight edges surrounding the point
in the x, y, and z directions. When an edge in a given
octant of space about the point could not be found,
the next nearest edge in another octant was used,
but this sometimes resulted in an ill-conditioned
matrix. This process worked smoothly once the divi-
sion between x-, y-, and z-directed edges had been
optimized for the meshes being used, although
fancier logic could make the process more robust.

Non-Orthogonal Current Source Modeling

The 3-D vector interpolation works for sensing
the fields at arbitrary points in a non-orthogonal
mesh. The scheme works perfectly, neglecting finite
precision errors, for fields that have a linear varia-
tion. One must be more careful when dealing with
sources. A rigid electron beam with known trajec-
tory can be modeled as a current source in a FVTD
scheme. However, the current source must be intro-
duced so that it is charge conserving and causal.

Using FDTD or FVTD on orthogonal grids for
current sources moving along straight grid edges is
trivial. The implementation of current sources on
orthogonal grids is still straightforward even if the
current sources change direction, as long as the
above mentioned constraints are enforced and the
current sources remain tied to grid edges. The left
side of Fig. 3 depicts typical DC fields left behind if
one models current jumping from one edge to
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another instantaneously without changing direction
on a continuous path. The right side of Fig. 3
depicts the correct way of modeling sources in a
FDTD method. The current path is continuous
around the stair-steps and causality is enforced by
appropriate edge-to-edge delays in the incident
current. The large DC field left behind when conti-
nuity or causality are not enforced correctly can
often produce late time instabilities in a FDTD or
FVTD method.

Now consider how to model a current source that
was traveling just a few degrees tilted with respect
to one of the grid axes so that it cannot conform to
the grid edges. One could model the current source
as a superposition of current sources along
surrounding grid edges, weighted based on the local
source position. This approach causes the beam
cross-section to increase significantly. 

One could model the current source as in the
right side of Fig. 3 where the current source trajec-
tory is a series of edges that are the closest fit to the
true path. This approach works well unless high-
frequency phase information is critical. One could
surrender and use a full-blown Particle In Cell (PIC)
approach at the expense of dramatically increasing
memory and CPU overheads. Or lastly, one could
modify the mesh to conform to the source trajectory.
In general, this will force the mesh surrounding the
sourced edge to be non-orthogonal where the field
components are coupled. This latter approach is the
one we have taken. The modification of the DSI algo-
rithm to introduce a current source through the cells
is outlined below.

Consider updating a current edge as shown in
Fig. 4. Using the DSI method for the unstructured
mesh, the change in the electric flux density at the

corner of faces a, bi, ci, is

where for each face a, bi, ci we define

and a, bi, ci are vector area normals for the faces
depicted in Fig. 4. Assuming we are one or more
cells away from any exterior boundaries, the full
electric flux density is the summation of the partial
electric flux densities traversing the corners of face
a for the upper and lower cells. The total electric
flux density can then be written as 

where wi is a weighting term.
The electric field dotted along a given edge can then

be easily written using the above equation. However,
correction terms must also be added to every electric
field update that uses face a in its update stencil. In
simple terms, every should be replaced with .
The electric field for a given edge including all poten-
tial current sources can be written

(5)

where Ibi, and Ici are current sources through faces
bi and ci respectively. In general, there will be eight
correction terms for each sourced edge on a hexahe-
dral grid.

The first term on the right hand side of Eq. 5 can
be thought of as the orthogonal portion while the
remaining terms on the right hand side can be
thought of as correction terms due to the non-
orthogonal mesh. These non-orthogonal corrections
are required to preserve current continuity. Non-
physical DC fields and instabilities can arise when
these correction terms are missing. In a fully
Cartesian mesh Eq. 5 reduces to the usual update
equation including current. 

Equation 5 leaves no DC fields behind. It is note-
worthy to mention that even if the correction terms
are very small, say ~10-4 of the orthogonal contribu-
tion, their contribution can dramatically affect the
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overall solution. Even changing the contributions in
the sixth or seventh decimal place can have a signifi-
cant impact on the overall solution accumulated
over time. Research into why these terms are overly
sensitive to numerical precision is ongoing. 

Septum Modeling

Figure 5 shows the outer surface of the septum
built for the ETA-II accelerator. Figures 1 and 2
show the actual septum we modeled. The purpose
was to get a better understanding of the wake fields
caused by such a structure. A high-current electron
beam is “kicked” upstream. The beam comes into
the septum waveguide structure displaced +/- ~3 cm
off the center axis of the septum. The beam has a tilt
of roughly 0.86° entering the waveguide section. 

In computing and processing the wake fields we
started with the septum model and later looked at
simpler situations such as a “T” junction in the pipe.
The septum presented a number of new problems
that made the wakefield processing more difficult
than in previous cases such as the kicker. With the
kicker, or any straight pipe that does not have
protrusions into the pipe volume, the beam source
can be replaced by equivalent source fields along the
pipe walls. The equivalent source fields exist only
over cavities or apertures in the pipe walls, so
errors due to launching the wave from the problem-
space boundary are avoided, and the source does
not accumulate dispersion error over the length of
the pipe. Early modeling of wake fields with TSAR
did not use equivalent sources, but the solution for
the field of the beam in a clean pipe was subtracted
from the solution for the pipe with cavity or kicker.

While errors were introduced in launching the
source field and through dispersion, the subtraction
was very effective in canceling these errors. Neither
an equivalent source nor subtraction could be used
with the septum, since there is no straight pipe path
through the structure. Hence we had to work with
the raw fields from the solution for the septum model.

Since the septum was modeled with the DSI algo-
rithm, a continuous string of edges could be chosen
to follow the beam path. The source was introduced
as a Gaussian pulse of current traveling at the veloc-
ity of light, v = c, along the source edges. Fields were
set up over the boundary where the pulse entered the
problem space as if the pulse had come from infinity.
The fields set up on the entry surface and also the
absorbing boundary introduce errors into the solu-
tion, but these errors are confined to near the bound-
aries and were excluded in computing wake fields.

As each model was run, the electric and
magnetic fields were saved for all edges and all
time steps. Then in post-processing the fields were
selected along the beam path or on a cylinder about
the path. The fields on the cylinder were evaluated
for 32 azimuthal angles about the beam using
linear vector interpolation. Wake potentials were
computed from the fields using the standard definitions

The wake potentials were then Fourier-trans-
formed to obtain coupling impedances. When the
wake potentials had significant ringing at the end of
the solution record they were extrapolated using
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Figure 5. Outer surface of the ETA-II septum.
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decaying exponentials obtained with the Generalized
Pencil of Functions method.2

Before computing the wake potentials we exam-
ined the longitudinal Er(r, z, t) fields and transverse
field on 3-D plots versus z
and t. A typical plot is shown in Fig. 6 for a simple “T”
pipe junction. The wake potential W(s) is the integral
of the field along a line t = (z+s)/v, where s = 0 corre-
sponds to the beam line shown in white in Fig. 6.
Plots such as Fig. 6 show the sources of the wake
fields and can also reveal errors that would go unno-
ticed in the final wake potential. A number of prob-
lems were corrected in this way before getting the
final wake potential results. The large fields near the
ends of the beam line are errors due to launching and
absorbing the pulse and were excluded from the fields
used in the wake potential evaluation. The crease
following the beam line is due to inherent solution and
processing errors. It can be removed when a solution
for a clean pipe can be subtracted. Otherwise it must
be considered as a source of error in the wake poten-
tial, since it has low amplitude but long duration.

A plot of the field Ez along a line in the z, t space
of Fig. 6 is shown in Fig. 7 for the m = 0 mode of
the septum. The dotted line is the field Ez(0,z,z/v)
normalized to fit on the plot, and the solid line is the
integral of this field. Thus the final value of the solid
line represents the wake potential Wz(0). This plot
shows the scattered field due to the split in the
septum where the waveguide contracts in height and
expands in width before splitting. The field, and
hence the kick imparted to the particle, has both

E r z t vH r z tr( , , ) ( , , )− φ

positive and negative components that partially
cancel in the integral. 

The wake field in the input pipe has a small value,
but makes a significant contribution to the integral
due to its long duration. This field may be partly due
to inherent errors in the solution and processing and
partly due to the real effect of the beam traveling on
a tilted path with respect to the pipe axis. One
method considered to reduce the processing errors
was to start the beam parallel to the axis and then
bend it to the correct path. The field at a point where
the beam is parallel to the axis can then be used to
remove some solution and processing errors over
the rest of the beam path. While not as effective as
subtracting a full clean-pipe solution, this method
reduces the errors somewhat. The standard evalua-
tion of wake potential, with integration to infinity,
would require that the beam start and end parallel
to the pipe axis, but that raises questions of how to
treat the fields produced where the beam changes
directions without a self-consistent PIC solution. In
our modeling we considered only a tilted beam trun-
cated about 0.6 m before and after the split in the
septum. While the result obtained will depend on the
truncation distances, our modeling showed the wake
potential of the septum to be much smaller than that
of the kicker, and on the order of that for the “T”
junction discussed below. Experimental results
appear to verify this assessment.

To get a better understanding of the wake fields
in a structure having some of the properties of the
septum we modeled several structures such as the
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“T” junction shown in Fig. 8. The notch in the beam
pipe in Fig. 8 is a result of the side pipe having
straight edges on its end. We also modeled smooth
pipe junctions. The “T” junction is similar to the
DHART septum, but with the branch normal to the
beam pipe rather than tilted. Since this model had a
straight pipe, the clean-pipe solution could be
subtracted to reduce errors. The longitudinal wake
impedance for the “T” is shown in Fig. 9 for m =0, 1
and 2, and transverse impedances for m = 1 and 2
are shown in Fig. 10. It should be noted that m indi-
cates the azimuthal variation of the wake imped-
ance, but an m = 0 source is always assumed here.

The coupling impedances for the “T” pipe were
compared with approximations based on scattering
by a small hole in a pipe published by Gluckstern.3

Gluckstern derived the m = 0 longitudinal imped-
ance due to a m = 0 source and the m = 1 trans-
verse impedance due to a m = 1 source. Since we
considered only m = 0 sources here, we followed
Gluckstern’s small-hole analysis to get the longitudi-
nal impedance approximations for m = 0, 1 and 2:

and transverse impedance approximations

for pipe radius a, hole radius b and test particle at r.
Gluckstern’s analysis assumes a hole small
compared to the pipe diameter and wavelength and
a thin pipe wall. For an infinitely thick pipe wall,
corresponding to our case, he suggests a correction
factor of 56% of the above values. For Figs. 9 and 10,
the hole in the beam pipe had width 8 cm and
length 10 cm, so we used = 0.05 m,
while a = 0.0667 m. With the 56% correction these
approximations yield 2.16 Ω, 0.64 Ω and 0.097 Ω for
longitudinal impedance at 1 GHz for m = 0, 1 and 2,
respectively, and 3.09 Ω and 0.93 Ω for transverse
impedance for m = 1 and 2. Considering the large
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diameter side pipe in our model violates some of
Gluckstern’s assumptions, these values are in
reasonable agreement with the results in Figs. 9
and 10, with the largest error occurring for m = 0
longitudinal. It appears that the wake fields of this
“T” structure are on the order of those of the septum.

We also modeled a “T” junction where the hole in
the beam pipe was a slot 2 cm wide by 20 cm long.
The longitudinal m = 0 impedance at 1 GHz was 0.8 Ω,
in agreement with Gluckstern’s assertion that slots
have lower impedance than circular holes of similar
area. A “T” model with a smooth beam pipe junction
showed a somewhat smaller wake potential than the
model of Fig. 8. We also ran 2-D cases involving a
pipe with a step in, step out, cavity or collimator. We
compared the results to analytic solutions and
performed symmetry checks (a dual “T”) and
convergence checks to gain confidence. 

In summary, we can obtain accurate wake fields
for situations where we can subtract a solution for a
clean pipe, or any reference solution for zero wake

potential. If wake fields are very small (10–4 to 10–5

down from the source fields) then numerical errors
can become a dominant error source. When the
beam is tilted in the pipe, modified definitions for
wake potentials must be developed before more
meaningful results can be obtained.

Future Work

We plan on incorporating the new physics and
usability enhancements developed here into a more
production level code. All of these enhancements,
along with the developments of previous efforts are
vital as we transition TIGER’s technologies out of a
research environment and into a user environment. 

As always, there are many things on our wish list
to incorporate into this new code. However, at the
top of the list, is the need to more accurately model
highly distorted non-orthogonal cells near bound-
aries. Currently, when we have distorted cells next
to metal surfaces we can have a small charge
buildup. This charge buildup can lead to errors and
instabilities. We have seen this charge buildup near
the knife edge seam of the septum, especially when
the cells are highly distorted.
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Introduction

The need for robust multidisciplinary modeling
tools is increasing. ALE3D provides many of the
physics options required, but not all. The area in
which the deficiency is the greatest is in the treat-
ment of low Mach number flows where a compress-
ible flow model with explicit time integration is
inefficient. The objective of this project at
Lawrence Livermore National Laboratory (LLNL) is
to provide an improved modeling capability for the
low Mach number area by incorporating an incom-
pressible flow module in ALE3D. With this capabil-
ity, many programmatic problems of immediate and
future concern can be solved. Examples include
modeling of vehicle aerodynamics and underhood
thermal transport for reducing energy consump-
tion, modeling near-field biological or chemical
dispersion for counterproliferation and missile
defense projects, modeling of arterial hemody-
namics for medical applications, microfluidics
modeling, and thermal convection in storage facili-
ties for the defense programs.

Additional improvements in ALE3D algorithms
allow the code to better support modeling needs in
microfluidics and medical fields. LLNL’s Medical
Technology Program has identified a need for
detailed modeling of arterial flow as a means of
understanding the mechanisms that control the
formation of aneurysms. The use of arterial inserts,

or stents, to affect arterial structure or evolution is
now becoming common. The interaction of these
artificial structures on flow dynamics is not well
understood and is currently not adequately charac-
terized in the design process. 

The term hemodynamics has been used to
describe this general technical area. Such model-
ing is best performed with the incompressible
model and will require close coupling to the
dynamics of the arterial response. Models to
describe the viscous flow properties of blood as
well as the arterial response will have to be devel-
oped. The existing explicit, compressible algo-
rithms in ALE3D are being used to address model-
ing issues and determine the applicability of the
modeling approach while the incompressible capa-
bility is under development.

The microfluidics work, particularly with respect
to the representation of fluid properties, has
considerable synergism with modeling activities in
the arterial flow arena. An initial ALE3D calculation
of a piezoelectric crystal-driven fluid indicated
potential utility for LLNL’s Acoustically-Driven
Microfluidic System Project.1 The initial microfluidic
investigations were also performed with the explicit,
compressible algorithms in ALE3D.

Much of the computational fluid dynamics (CFD)
parallelization and the numerical solution methods
are new in this work, as well as the multi-physics
coupling of the thermal/fluid models and
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structural/fluid models. (The flow, diffusion, and
structural phenomena have different stability and
accuracy criteria which direct the numerical solu-
tion approach, grid resolution, and time step.) The
ALE3D code is at the forefront of multi-physics
modeling and its capabilities and demonstrated
applications in massively parallel computing are
unmatched by currently available commercial and
non-commercial software. The addition of an incom-
pressible flow model coupled to its structural, heat
transfer, and chemistry models pushes us into previ-
ously unattainable areas of computational modeling.

Progress

Incompressible Flow Model

An Eulerian formulation of the time-dependent
incompressible Navier-Stokes equations is solved
using a finite-element approach. The finite-element
method (FEM) used is similar to that developed by
Gresho et al.2 Unlike their original investigations our
algorithms allow for the use of unstructured meshes
with one-point integration, hour-glass stabilization,
and balancing tensor diffusivity (BTD) for explicit
time integration. 

Using Galerkin FEM, the discretized continuity
and momentum equations can be written in matrix
form as

CTu=0 (1)

(2)

where u is the nodal velocity vector, p is the pressure
vector, M is the mass matrix, K is the diffusivity, N(u)
is the advection operator, C is the gradient operator,
and F is the user supplied natural boundary condition.

    
Mu̇ K N u Cp F+ + ( )( ) + =u

In the current implementation, a lumped mass
matrix is used and the coefficient matrices are
generated using one-point Gaussian quadrature. The
Q1P0 element formulation is used, which provides
trilinear velocity support with piecewise constant
pressure in three dimensions. The equation solution
method was chosen for compatibility with the solver
finite element interface3 developed by Sandia
National Laboratories (SNL) in collaboration with
LLNL. The continuity and momentum equations are
solved together for the velocity difference and pres-
sure with an explicit forward Euler time integration

(3)

where

f=F-(K+N(u)), and (4)

(5)

where n is the time step level.
An additive correction (diffusivity) to the diffusion

matrix balances the negative diffusion induced by
the explicit Euler time integration (that is, BTD,
Gresho et al.2). Also an hour-glass correction is
added to the one-point quadrature diffusion matrix
to damp any zero energy modes that may be present
because of the reduced integration scheme
(Goudreau and Hallquist4 and Gresho et al.2). To
reduce the computational effort in the evaluation of
the advection term, we use a “centroid advection
velocity” simplification as was done by Gresho et al.2

For turbulent flow modeling a large-eddy simula-
tion (LES) capability is available. In an LES of turbu-
lent flows, the large-scale motion is calculated
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explicitly (that is, resolved) and the small-scale
motion is modeled (that is, approximated with semi-
empirical relations). For more details on the model
see McCallen et al.5

Figures 1 and 2 are example simulations for a
shear-driven flow and a lid-driven cavity, respec-
tively. The shear driven flow was one case used for
model verification.

Compressible Flow Model

Several compressible flow model enhancements
were completed for application to flow around a
circular cylinder, a hemodynamics application of
pulsating flow in an artery with a stent, shock
impact on a droplet, and two microfluidics applica-
tions of supersonic flow in a micro-nozzle and
acoustically driven micro-channel flow.

Verification: Flow around a Circular Cylinder.
The simulation of laminar flow around a circular
cylinder at Reynolds number, Re, of 1200 and Mach
number, Ma, of 0.3 is shown in Fig. 3. (The
Reynolds number is a measure of inertial forces to
viscous forces: Re = UD/υ, where U is the freestream
velocity, D is the cylinder diameter and υ is the fluid
kinematic viscosity.) The calculated drag coefficient,
CD, and Strouhal number, St, for our 2-D and 3-D
calculations agree with those of Cox et al.6 (The
drag coefficient, CD, is a dimensionless drag force
defined as the drag force/(dynamic pressure x
projected area). The Strouhal number is defined as
the oscillation frequency over the mean speed and is
a measure of the vortex shedding frequency.) In 2-D,
the calculated CD = 1.6 and St = 0.23. In 3-D, CD = 1.4
and St = 0.20.

Hemodynamics: Pulsating Flow through an
Arterial Stent. Modeling the effects of a stent in an
artery requires the coupling of a pulsing blood flow
and the response of the artery wall. Figure 4 is an
example calculation of pulsating flow through an
arterial stent. In this first attempt, the stent is
modeled with a simple material change. The region
of the artery with the stent is a stiff material
compared to the more flexible artery wall region.

Microfluidics: Supersonic Flow in a Micro-Nozzle
and Acoustically-Driven Micro-Chamber Flow.
ALE3D’s capability as a microfluidics analysis tool was
evaluated by application to two sample problems. The
first case is a supersonic micro-nozzle flow that was
developed and investigated by Massachusetts Institute
of Technology for use by the spacecraft industry to drive
low-thrust propulsion systems.7 Figure 5 shows the
calculated Mach number distribution for Re = 2805. The
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challenge for this nozzle simulation is to capture the
reduction in mass flow due to viscous effects at the wall
(that is, flow blockage due to a substantial boundary
layer or velocity gradient at the nozzle wall).

The second case is an acoustic micro-chamber.
The modeled chamber is being developed by A. Wang
at LLNL in the Center for Microtechnology. Figure 6
shows the modeled geometry. The acoustic energy
collects the macromolecules in the system.
Important issues are the coupling of the driving
mechanism to the chamber and the delivery and
distribution of the acoustic energy.

Source Characterization: Shock Impact on a
Droplet. Source characterization of the explosion
and dispersion of biological or chemical substances
is important to LLNL’s counterproliferation and
missile defense projects. One phenomenon of impor-
tance is the shock impact on a droplet and subse-
quent fluid breakup. Figure 7 shows calculated
droplet deformation due to shock impact.

Future Work

The first priority for the coming year is to complete
a verification and validation study of the incompress-
ible flow model. It is also important to investigate the
code performance for parallel computing to verify that
expected speed-ups are achieved.

Coupling of the incompressible flow model to the
diffusion model in the ALE3D code is necessary for
simulating thermal-advection problems as with appli-
cations involving the heating of an air filled room by
machinery or other heat sources. For thermal-
advection modeling, the addition of a buoyancy term
to the flow model is required. 

Capturing the expansion and contraction of an
artery wall due to the pulsing blood flow will
require the coupling of the incompressible flow and
structural modules in the code. Plans are to use
simple grid re-mapping techniques for the
fluid/structure interface.
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